login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245800 a(n) is the least number k such that Sum_{j=S(n)+1..S(n)+k} 1/j >= 1/2, where S(n) = Sum_{i=1..n-1} a(i) and S(1) = 0. 0
1, 1, 2, 3, 5, 9, 14, 24, 39, 64, 106, 175, 288, 475, 783, 1291, 2129, 3510, 5787, 9541, 15730, 25935, 42759, 70498, 116232, 191634, 315951, 520915, 858844, 1415994, 2334579, 3849070, 6346044, 10462858, 17250336, 28440996, 46891275, 77310643, 127463701, 210152115, 346482262 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The limiting ratio of consecutive terms is sqrt(e) ~ 1.648721270700128.

Conjecture 1: If the summation threshold (which, for this sequence, is defined as 1/2) is set to any positive number R, then the limiting ratio of consecutive terms in the resulting sequence is e^R.

Conjecture 2: If the summation threshold is set to log(phi) = 0.4812118250..., then the Fibonacci sequence is generated.

Partition the harmonic series into the smallest-sized groups that sum to 1/2 or greater. You get 1, 1/2, 1/3 + 1/4, 1/5 + 1/6 + 1/7, 1/8 + 1/9 + 1/10 + 1/11 + 1/12, 1/13 + 1/14 + ... + 1/21, 1/22 + ... ; a(n) gives the number of terms in the n-th group. - Derek Orr, Nov 08 2014

A partition sums to exactly 1/2 for only n=2. - Jon Perry, Nov 09 2014

LINKS

Table of n, a(n) for n=1..41.

EXAMPLE

Start with 1/1; 1/1 >= 1/2, so a(1) = 1.

1/1 has been used, so start a new sum with 1/2; 1/2 >= 1/2, so a(2) = 1.

1/1 and 1/2 have been used, so start a new sum with 1/3; 1/3 + 1/4 >= 1/2, so a(3) = 2.

1/1 through 1/4 have been used, so start a new sum with 1/5; 1/5 + 1/6 + 1/7 >= 1/2, so a(4) = 3, etc.

PROG

(Python)

import math

total = 0

prev = 1

count = 0

for n in range(1, 10**7):

....total = total + 1/n

....count = count + 1

....if (total >= 0.5):

........print(count, end=', ')

........prev = count

........total = 0

........count = 0

.

print("\ndone")

print(math.sqrt(math.e))

# Rob van den Tillaart, Aug 22 2014 [Corrected by Derek Orr, Oct 16 2014]

(Python)

def a(n):

..if n == 1:

....return 1

..tot, c, k = 0, 0, 0

..for x in range(1, 10**7):

....tot += 1/x

....if tot >= 0.5:

......k += 1

......tot = 0

....if k == n-1:

......c += 1

....if k == n:

......return c

n = 1

while n < 100:

..print(a(n), end=', ')

..n += 1

# Derek Orr, Oct 16 2014

(PARI) lista(nn) = {n = 1; while (n < nn, k = 1; while (sum(x=n, n+k-1, 1/x) < 1/2, k++); print1(k, ", "); n = n+k; ); } \\ Michel Marcus, Sep 14 2014

(PARI) a(n)=if(n==1, return(1)); p=sum(i=1, n-1, a(i)); k=1; while(sum(x=p+1, p+k, 1/x)<1/2, k++); k

n=1; while(n<100, print1(a(n), ", "); n++) \\ Derek Orr, Oct 16 2014

CROSSREFS

Cf. A226161.

Cf. A019774, A002390.

Sequence in context: A173714 A026746 A004699 * A291896 A018155 A227375

Adjacent sequences:  A245797 A245798 A245799 * A245801 A245802 A245803

KEYWORD

nonn

AUTHOR

Rob van den Tillaart, Aug 22 2014

EXTENSIONS

Edited by Derek Orr, Nov 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 19:10 EDT 2019. Contains 324198 sequences. (Running on oeis4.)