login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245785 Denominator of (n/tau(n) + sigma(n)/n) 4
1, 2, 6, 12, 10, 2, 14, 8, 9, 10, 22, 3, 26, 14, 20, 80, 34, 6, 38, 30, 84, 22, 46, 2, 75, 26, 108, 3, 58, 20, 62, 96, 44, 34, 140, 36, 74, 38, 156, 4, 82, 28, 86, 33, 30, 46, 94, 60, 147, 150, 68, 78, 106, 36, 220, 7, 228, 58, 118, 5, 122, 62, 126, 448, 260 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Denominator of (n/A000005(n) + A000203(n)/n).

See A245784 - numerator of (n/tau(n) + sigma(n)/n).

A245784(n) / a(n) = integer for numbers n in A245786; a(n) = 1.

First deviation from A245777 (denominator of (n/tau(n) - sigma(n)/n)) is at a(300); a(300) = 25, A245777(300) = 75. Sequence of numbers n such that A245777(n) is not equal to a(n): 300, 768, 1452, 1764, 2100, 3468, 3900, 5376, 5700, 6084, 6348, 9075, 9300, ... See (MAGMA) [n: n in [1..10000] | (Denominator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n))) - (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) ne 0]

LINKS

Jaroslav Krizek, Table of n, a(n) for n = 1..10000

EXAMPLE

For n = 9; a(9) = denominator(9/tau(9) + sigma(9)/9) = denominator(9/3 + 13/9) = denominator(40/9) = 9.

PROG

(MAGMA)  [Denominator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n)): n in [1..1000]]

(PARI) for(n=1, 100, s=n/numdiv(n); t=sigma(n)/n; print1(denominator(s+t), ", ")) \\ Derek Orr, Aug 15 2014

CROSSREFS

Cf. A000005, A000203, A245784, A245786.

Sequence in context: A107647 A210842 A245777 * A145102 A145103 A009230

Adjacent sequences:  A245782 A245783 A245784 * A245786 A245787 A245788

KEYWORD

nonn,frac

AUTHOR

Jaroslav Krizek, Aug 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 21:59 EST 2019. Contains 320200 sequences. (Running on oeis4.)