login
A245739
Decimal expansion of z_kag, the bulk limit of the number of spanning trees on a kagomé lattice.
2
1, 1, 3, 5, 6, 9, 6, 4, 0, 1, 7, 7, 5, 1, 0, 2, 5, 2, 3, 7, 6, 0, 2, 1, 9, 9, 7, 0, 6, 6, 6, 5, 7, 8, 0, 8, 1, 0, 2, 8, 0, 6, 6, 6, 3, 2, 0, 2, 8, 6, 4, 6, 5, 9, 5, 5, 0, 3, 2, 3, 8, 8, 9, 8, 3, 1, 1, 9, 8, 7, 8, 2, 6, 4, 0, 8, 2, 1, 7, 6, 3, 0, 9, 6, 6, 1, 3, 9, 0, 4, 2, 4, 1, 9, 0, 0, 2, 5, 7, 8, 8, 9, 9
OFFSET
1,3
FORMULA
(1/3)*(2*log(2) + 2*log(3) + H), where H is the auxiliary constant A242967.
Equals (1/3)*(A245725 + log(6)).
EXAMPLE
1.1356964017751025237602199706665780810280666320286465955...
MATHEMATICA
H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/3)*(2*Log[2] + 2*Log[3] + H), 10, 103] // First
CROSSREFS
Cf. A218387(z_sq), A242967(H), A245725(z_tri), A245736(z_br), A245737(z_hc).
Sequence in context: A195481 A199730 A016612 * A199187 A098587 A321885
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved