login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of z_hc, the bulk limit of the number of spanning trees on a honeycomb lattice.
3

%I #5 Jul 31 2014 05:33:41

%S 8,0,7,6,6,4,8,6,8,0,4,8,6,2,6,2,8,5,2,3,4,0,9,1,2,7,6,8,0,9,5,1,5,9,

%T 8,5,1,8,0,6,0,4,6,0,1,9,5,1,4,6,7,5,4,0,3,2,7,1,7,1,1,7,5,9,0,2,5,3,

%U 7,7,8,2,0,1,8,1,7,4,6,0,5,2,0,9,4,6,9,0,2,2,7,2,3,4,2,8,4,8,0,1,8,3,7

%N Decimal expansion of z_hc, the bulk limit of the number of spanning trees on a honeycomb lattice.

%H Robert Shrock and F. Y. Wu, <a href="http://arxiv.org/abs/cond-mat/0004341">Spanning Trees on Graphs and Lattices in d Dimensions</a> p. 7.

%F (1/2)*(log(2) + log(3) + H), where H is the auxiliary constant A242967.

%e 0.8076648680486262852340912768095159851806046019514675403271711759...

%t H = Sqrt[3]/(6*Pi)*PolyGamma[1, 1/6] - Pi/Sqrt[3] - Log[6]; RealDigits[(1/2)*(Log[2] + Log[3] + H), 10, 103] // First

%Y Cf. A218387(z_sq), A242967(H), A245725(z_tri).

%K nonn,cons,easy

%O 0,1

%A _Jean-François Alcover_, Jul 31 2014