login
Expansion of eta(q)^6 * eta(q^2) / eta(q^4)^2 in powers of q.
7

%I #65 Sep 08 2022 08:46:09

%S 1,-6,8,16,-38,-16,48,64,-56,-150,112,112,-112,-80,160,192,-294,-288,

%T 248,304,-272,-160,368,320,-336,-726,400,448,-448,-240,544,640,-568,

%U -864,736,608,-950,-400,656,832,-784,-1152,864,1008,-784,-496,1184,896,-1136

%N Expansion of eta(q)^6 * eta(q^2) / eta(q^4)^2 in powers of q.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A245643/b245643.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of phi(q) * phi(-q)^4 = phi(-q)^3 * phi(-q^2)^2 = phi(-q^2)^8 / phi(q)^3 = f(-q)^6 / psi(q^2) in powers of q where phi(), psi(), f() are Ramanujan theta functions.

%F Euler transform of period 4 sequence [ -6, -7, -6, -5, ...].

%F G.f.: Product_{k>0} (1 - x^k)^6 * (1 - x^(2*k)) / (1 - x^(4*k))^2.

%F Convolution inverse of A134416.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 8192^(1/2) (t/I)^(5/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A266575. - _Michael Somos_, Jan 03 2016

%F a(3*n + 2) = 8 * A263398(n). - _Michael Somos_, Oct 16 2015

%e G.f. = 1 - 6*q + 8*q^2 + 16*q^3 - 38*q^4 - 16*q^5 + 48*q^6 + 64*q^7 + ...

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q]^4, {q, 0, n}];

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^3 EllipticTheta[ 4, 0, q^2]^2, {q, 0, n}];

%t a[ n_] := SeriesCoefficient[ 2 q^(1/4) QPochhammer[ q]^6 / EllipticTheta[ 2, 0, q], {q, 0, n}];

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^6 * eta(x^2 + A) / eta(x^4 + A)^2, n))};

%o (Magma) A := Basis( ModularForms( Gamma1(4), 5/2), 49); A[1] - 6*A[2];

%Y Cf. A134416, A263398, A266575.

%K sign

%O 0,2

%A _Michael Somos_, Sep 01 2014