Borel summation of a family of divergent series

Peter Bala, Dec 272022

Introduction

The identity

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{n^{n}}=1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{4^{4}}+\cdots=\int_{0}^{1} \frac{d x}{x^{x}} \tag{1}
\end{equation*}
$$

is known humorously as the Sophomore's dream [3]. See A073009. It is the case $a=b=t=1$ of the more general result

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{t^{n}}{(a n+b)^{n+1}}=\int_{0}^{1} \frac{x^{b-1}}{x^{t x^{a}}} \mathrm{~d} x \quad a, b \in \mathbb{Z}_{>0} \tag{2}
\end{equation*}
$$

For a proof of (1) see [3]. The proof of (2) is exactly similar: write the integrand in (2) as $x^{b-1} \exp \left(-t x^{a} \log (x)\right)=\sum_{n=0}^{\infty}(-1)^{n} t^{n} x^{n a+b-1} \log ^{n}(x) / n!$, interchange the order of summation and integration, and then make the change of variable $x=\exp (-u /(a n+b))$ to evaluate the integrals.

Watson [2, Section 5] proved the following result, originally stated by
Ramanujan: the Borel sum of the divergent series $1-1^{1}+2^{2}-3^{3}+4^{4}-\cdots$ is equal to $\int_{1}^{\infty} \frac{d x}{x^{x}}$.

We write Watson's result as

$$
\begin{equation*}
1-1^{1}+2^{2}-3^{3}+4^{4}-5^{5}+\cdots=\int_{1}^{\infty} \frac{d x}{x^{x}} \quad(\text { Borel }) . \tag{3}
\end{equation*}
$$

The numerical vaule of the integral is 0.7041699604.... See A245637.
The purpose of this note is to extend Watson's result and prove further Borel summability results such as

$$
1^{1}-3^{2}+5^{3}-7^{4}+9^{5}-11^{6}+\cdots=\int_{1}^{\infty} \frac{d x}{x^{x^{2}}} \quad(\text { Borel })
$$

and

$$
2^{1}-5^{2}+8^{3}-11^{4}+14^{5}-17^{6}+\cdots=\int_{1}^{\infty} \frac{d x}{x^{x^{3}}} \quad(\text { Borel })
$$

The general result (Proposition 2, below) is

$$
\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n}=\int_{1}^{\infty} \frac{x^{a-b-1}}{x^{x^{a}}} \mathrm{~d} x \quad \text { (Borel) } \quad a, b \in \mathbb{Z}_{\geq 0}
$$

Borel summation along \mathbb{R}^{+}

Let $A(z)$ denote a formal power series

$$
A(z)=\sum_{n=0}^{\infty} a(n) z^{n}
$$

Borel summation of $A(z)$ (in the direction of the positive real axis) is a method of assigning a value to the series $A(z)$, and involves three steps:

Step 1. Form the Borel transform of A defined as

$$
\mathcal{B}(A(z))=\sum_{n=0}^{\infty} \frac{a(n)}{n!} z^{n} .
$$

Since the n-th coefficient of the series $\mathcal{B}(A(z))$ is smaller by a factor n ! than the corresponding coefficient of $A(z)$, the Borel transform $\mathcal{B}(A(z))$ may have a nonzero radius of convergence even if $A(z)$ does not. Assuming this is the case, we may sum the series in some open disc centred at $z=0$.

Step 2. Suppose further that we can analytically continue this sum on the whole of the positive real axis \mathbb{R}^{+}. Denote the analytic continuation by $F(z)$.

Step 3. Find the Laplace transform $\mathcal{L}(F)$ of F :

$$
\begin{equation*}
\mathcal{L}(F)(z)=\int_{0}^{\infty} F(t) e^{-t z} \mathrm{~d} t \tag{4}
\end{equation*}
$$

The existence of the improper integral requires exponential bounds on the growth of $F(x)$ for large real x. If the integral converges at $z_{0} \in \mathbb{C}$, say to $\widetilde{A}\left(z_{0}\right)$, we say that the Borel sum of A converges at z_{0}, and write

$$
\left.\sum_{n=0}^{\infty} a(n) z_{0}^{n}=\widetilde{A}\left(z_{0}\right) \quad \text { (Borel }\right)
$$

Reversion of series

Watson's proof of (3) makes use of the identity

$$
\begin{equation*}
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{n}}{n!}(x \exp (x))^{n} \tag{5}
\end{equation*}
$$

whose proof uses the Lagrange inversion formula. In order to generalise this identity we need the more general Lagrange-Bürmann formula for the reversion of power series, which we state in the following form:

Let $f(w)$ be an analytic function in a neighbourhood of 0 with $f(0)=0$. Then there is a function $g(w)$, analytic in a neighbourhood of 0 , which is the inverse of $f(w)$, that is, $f(g(w))=g(f(w))=w$. Let $H(w)$ be an arbitrary analytic function in a neighbourhood of 0 . Then the coefficients in the power series expansion of the function $H(g(w))$ about the point $w=0$ are given by

$$
\begin{equation*}
\left[w^{n}\right] H(g(w))=\frac{1}{n}\left[t^{n-1}\right]\left(H^{\prime}(t)\left(\frac{t}{f(t)}\right)^{n}\right) \tag{6}
\end{equation*}
$$

(The particular case of this result when $H(w)=w$ is the Lagrange inversion formula.)

We generalise (5) as follows.
Proposition 1. Let a and b be nonnegative integers. Then

$$
\begin{equation*}
\frac{x^{b}}{1+a x^{a}}=\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n} \frac{\left(x \exp \left(x^{a}\right)\right)^{a n+b}}{n!} \tag{7}
\end{equation*}
$$

in a neighbourhood of $x=0$.
Proof. We split the proof into three cases.
(i) Case $a=0$ is trivial.
(ii) Suppose $b=0$. We have the identity [1, formula (14)]

$$
\begin{equation*}
\frac{1}{1+W(x)}=\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{n}}{n!} x^{n}, \quad|x|<e^{-1} \tag{8}
\end{equation*}
$$

where the function $W(x)$, which satisfies $W(x) \exp (W(x))=x$, is the principal branch of Lambert's W function.

Replacing x in (8) with $W^{-1}(x)=x \exp (x)$ gives

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{n}}{n!}(x \exp (x))^{n}, \quad|x \exp (x)|<e^{-1}
$$

and then replacing x with $a x^{a}$ yields (7) with $b=0$.
(iii) Suppose now a and b are both positive integers. Let $z=x \exp \left(x^{a}\right)$. Let $H(x)=\frac{x^{b}}{b}$. We apply the Lagrange-Bürmann formula to find $H(x)$ in terms of z. After a short calculation, we arrive at the result

$$
\begin{equation*}
\frac{x^{b}}{b}=\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n-1} \frac{z^{a n+b}}{n!} \tag{9}
\end{equation*}
$$

Differentiating (9) with respect to x gives

$$
\begin{aligned}
x^{b-1} & =\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n} \frac{z^{a n+b-1}}{n!} \frac{\mathrm{d} z}{\mathrm{~d} x} \\
& =\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n} \frac{z^{a n+b}}{n!} \frac{\left(1+a x^{a}\right)}{x}
\end{aligned}
$$

leading to the identity

$$
\frac{x^{b}}{1+a x^{a}}=\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n} \frac{\left(x \exp \left(x^{a}\right)\right)^{a n+b}}{n!}
$$

valid in some neighbourhood of $x=0$.
The rational function on the left side of (7) is analytic throughout the complex plane, except for a finite number of poles, which all lie off the positive real axis since a is positive, and thus gives an analytic continuation of the series in (7) to an open set in \mathbb{C} containing $\mathbb{R}^{+} \cup\{0\}$.

We now have the ingredients to find the Borel sum of the alternating divergent series $\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n}$.

Proposition 2. Let a, b be nonnegative integers. Then

$$
\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n}=\int_{1}^{\infty} \frac{x^{a-b-1}}{x^{x^{a}}} \mathrm{~d} x \quad(\text { Borel })
$$

Proof. The case $a=0$ is straightforward. Assume now a is a positive integer. We have

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n} & =\sum_{n=0}^{\infty}(-1)^{n} \frac{(a n+b)^{n}}{n!} \int_{0}^{\infty} t^{n} e^{-t} \mathrm{~d} t \\
& =\int_{0}^{\infty}\left\{\sum_{n=0}^{\infty}(-1)^{n} \frac{(a n+b)^{n}}{n!} t^{n}\right\} e^{-t} \mathrm{~d} t \\
& =a \int_{0}^{\infty}\left\{\sum_{n=0}^{\infty}(-1)^{n} \frac{(a n+b)^{n}}{n!} t^{a n+b}\right\} t^{a-b-1} e^{-t^{a}} \mathrm{~d} t \quad\left(t \rightarrow t^{a}\right)
\end{aligned}
$$

Since $u e^{u^{a}}$ increases steadily from 0 to ∞ as u increases from 0 to ∞, we have,
on writing $u e^{u^{a}}$ for t in the last integral,

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n}(a n+b)^{n} & =a \int_{0}^{\infty}\left\{\sum_{n=0}^{\infty}(-1)^{n} \frac{(a n+b)^{n}}{n!}\left(u e^{u^{a}}\right)^{a n+b}\right\} u^{a-b-1} e^{(a-b-1) u^{a}} e^{-u^{a} e^{a u^{a}}} \mathrm{~d}\left(u e^{u^{a}}\right) \\
& =a \int_{0}^{\infty}\left\{\frac{u^{b}}{1+a u^{a}}\right\} u^{a-b-1} e^{(a-b-1) u^{a}} e^{-u^{a} e^{a u^{a}}} e^{u^{a}}\left(1+a u^{a}\right) \mathrm{d} u \\
& =a \int_{0}^{\infty} u^{a-1} e^{(a-b) u^{a}-u^{a} e^{a u^{a}}} \mathrm{~d} u \\
& =\int_{1}^{\infty} \frac{x^{a-b-1}}{x^{x^{a}}} \mathrm{~d} x
\end{aligned}
$$

on making the change of variable $x=e^{u^{a}}$.

References

[1] R. M. Corless, D. J. Jeffrey, and D. E. Knuth
A sequence of series for the Lambert W function Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), pp. 197-204.
[2] G. N. Watson,
[3] Wikipedia,

Theorems stated by Ramanujan (VIII):
Journal of the London Mathematical Society, Volume s1-4, Issue 2, April 1929, Pages 82-86.

Sophomore's dream

