login
Let f(m) put the leftmost digit of the positive integer m at its end; a(n) is the sequence of all positive integers m with f^2(m)=f(m^2).
1

%I #22 Sep 25 2023 16:54:50

%S 1,2,3,12,122,1222,12222,122222,1222222,12222222,122222222

%N Let f(m) put the leftmost digit of the positive integer m at its end; a(n) is the sequence of all positive integers m with f^2(m)=f(m^2).

%F One can easily prove that all integers of the form 12...2 are elements of the sequence.

%e 122^2=14884 and 221^2=48841.

%t f[m_Integer] := Module[{w}, w := IntegerDigits[m]; FromDigits[Rest[AppendTo[w, First[w]]]]]; a245584[n_Integer] :=

%t Select[Range[n], If[f[#]^2 == f[#^2] && ! Mod[#, 10] == 0, True, False] &]; a245584[10^5] (* _Michael De Vlieger_, Aug 17 2014 *)

%o (Python)

%o import math

%o max = 10000

%o print('los')

%o for n in range(1, max):

%o nst = str(n*n)

%o nnewst = nst[1:] + nst[0]

%o d = int(nnewst)

%o e = int(math.sqrt(d))

%o est = str(e)

%o enewst = est[len(est)-1] + est[:len(est)-1]

%o if (e * e == d) and (nnewst[0] != "0") and (str(n) == enewst):

%o print(n, ' ', e)

%o print('End.')

%Y Cf. A045878, A090843.

%K nonn,base,more

%O 1,2

%A _Reiner Moewald_, Jul 26 2014