This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245562 Table read by rows: row n gives list of lengths of runs of 1's in binary expansion of n, starting with high-order bits. 12
 0, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 3, 3, 1, 4, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 4, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A formula for A071053(n) depends on this table. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..2770 N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015 EXAMPLE Here are the run lengths for the numbers 0 through 21: 0, [] 1, [1] 2, [1] 3, [2] 4, [1] 5, [1, 1] 6, [2] 7, [3] 8, [1] 9, [1, 1] 10, [1, 1] 11, [1, 2] 12, [2] 13, [2, 1] 14, [3] 15, [4] 16, [1] 17, [1, 1] 18, [1, 1] 19, [1, 2] 20, [1, 1] 21, [1, 1, 1] MAPLE for n from 0 to 128 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0; for i from 1 to L1 do    if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;    elif out1 = 0 and t1[i] = 1 then c:=c+1;    elif out1 = 1 and t1[i] = 0 then c:=c;    elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;    fi;    if i = L1 and c>0 then lis:=[c, op(lis)]; fi;                    od: lprint(n, lis); od: PROG (Python) from re import split A245562_list = [0] for n in range(1, 100): ....A245562_list.extend(len(d) for d in split('0+', bin(n)[2:]) if d != '') # Chai Wah Wu, Sep 07 2014 (PARI) row(n)=my(v=List(), k); while(n, n>>=valuation(n, 2); listput(v, k=valuation(n+1, 2)); n>>=k); Vecrev(v) \\ Charles R Greathouse IV, Oct 21 2016 CROSSREFS Row sums = A000120 (the binary weight). Cf. A245563, A071053. Sequence in context: A243005 A058393 A131256 * A304495 A175069 A245563 Adjacent sequences:  A245559 A245560 A245561 * A245563 A245564 A245565 KEYWORD nonn,base,tabf,easy AUTHOR N. J. A. Sloane, Aug 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 13:24 EDT 2019. Contains 328299 sequences. (Running on oeis4.)