login
A Rauzy fractal sequence: trajectory of 1 under morphism 1 -> 1,2,1,3; 2 -> 3; 3 -> 1.
5

%I #17 Oct 02 2016 10:26:52

%S 1,2,1,3,3,1,2,1,3,1,1,1,2,1,3,3,1,2,1,3,1,1,2,1,3,1,2,1,3,1,2,1,3,3,

%T 1,2,1,3,1,1,1,2,1,3,3,1,2,1,3,1,1,2,1,3,1,2,1,3,3,1,2,1,3,1,1,2,1,3,

%U 3,1,2,1,3,1,1,2,1,3,3,1,2,1,3,1,1,1,2,1,3,3,1,2

%N A Rauzy fractal sequence: trajectory of 1 under morphism 1 -> 1,2,1,3; 2 -> 3; 3 -> 1.

%H P. Arnoux and E. Harriss, <a href="http://www.ams.org/notices/201407/rnoti-p768.pdf">What is a Rauzy Fractal?</a>, Notices Amer. Math. Soc., 61 (No. 7, 2014), 768-770, also p. 704 and front cover.

%H Marcy Barge and Jaroslaw Kwapisz, <a href="http://www.jstor.org/stable/40068030">Geometric theory of unimodular Pisot substitutions</a>, Amer. J. Math. 128 (2006), no. 5, 1219--1282. MR2262174 (2007m:37039). See Fig. 18.1.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%t Nest[ Function[ l, {Flatten[(l /. {1 -> {1, 2, 1, 3}, 2 -> {3}, 3 -> {1}})] }], {1}, 9]

%Y Cf. A092782, A245553, A105083.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Aug 03 2014