

A245554


A Rauzy fractal sequence: trajectory of 1 under morphism 1 > 1,2,1,3; 2 > 3; 3 > 1.


5



1, 2, 1, 3, 3, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 3, 1, 2, 1, 3, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 3, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 3, 1, 2, 1, 3, 1, 1, 2, 1, 3, 1, 2, 1, 3, 3, 1, 2, 1, 3, 1, 1, 2, 1, 3, 3, 1, 2, 1, 3, 1, 1, 2, 1, 3, 3, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 3, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..92.
P. Arnoux and E. Harriss, What is a Rauzy Fractal?, Notices Amer. Math. Soc., 61 (No. 7, 2014), 768770, also p. 704 and front cover.
Marcy Barge and Jaroslaw Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer. J. Math. 128 (2006), no. 5, 12191282. MR2262174 (2007m:37039). See Fig. 18.1.
Index entries for sequences that are fixed points of mappings


MATHEMATICA

Nest[ Function[ l, {Flatten[(l /. {1 > {1, 2, 1, 3}, 2 > {3}, 3 > {1}})] }], {1}, 9]


CROSSREFS

Cf. A092782, A245553, A105083.
Sequence in context: A158440 A119803 A195916 * A110569 A140815 A134840
Adjacent sequences: A245551 A245552 A245553 * A245555 A245556 A245557


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Aug 03 2014


STATUS

approved



