

A245514


Smallest m such that at least one of the two odd numbers which bracket n^m is not a prime.


6



1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,3


COMMENTS

The locution "the two odd numbers which bracket n^m" indicates the pair (n^m1,n^m+1) for even n and (n^m2,n^m+2) for odd n.
The initial records in this sequence are a(2)=1, a(4)=2, a(9)=3, a(102795)=4. No higher value was found up to 5500000. It is not clear whether a(n) is bounded.


LINKS

Stanislav Sykora, Table of n, a(n) for n = 2..10000


EXAMPLE

a(2)=1 because one of the two odd numbers (1,3) which bracket 2^1 is not a prime. a(5)=2 because 5^1 is bracketed by the odd numbers (3,7) which are both prime, while 5^2 is bracketed by the odd numbers (23,27), one of which is not a prime.
The number c=102795 is the smallest one whose powers c^1, c^2, c^3 are all oddbracketed by primes, while c^4 is not.


PROG

(PARI) avector(nmax)={my(n, k, d=2, v=vector(nmax)); for(n=2, #v+1, d=3d; k=1; while(1, if((!isprime(n^kd))(!isprime(n^k+d)), v[n1]=k; break, k++)); ); return(v); }
a=avector(10000) \\ For nmax=6000000 runs out of 1GB memory


CROSSREFS

Cf. A245509, A245510, A245511, A245512, A245513.
Sequence in context: A051950 A172353 A282011 * A104754 A206827 A098593
Adjacent sequences: A245511 A245512 A245513 * A245515 A245516 A245517


KEYWORD

nonn


AUTHOR

Stanislav Sykora, Jul 24 2014


STATUS

approved



