

A245498


Least base B >= 2 such that the repunit (B^n1)/(B1) of length n is not squarefree.


0



3, 18, 3, 3, 2, 78, 3, 4, 3, 118, 2, 146, 3, 3, 3, 164, 2, 44, 2, 2, 3, 53, 2, 3, 3, 4, 3, 53, 2, 403, 3, 18, 3, 3, 2, 957, 3, 3, 2, 99, 2, 369, 3, 3, 3, 533, 2, 8, 3, 18, 3, 164, 2, 3, 3, 7, 3, 381, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

When n is prime, a(n) seems to be hard to determine.
Let p be a prime == 1 (mod n) (such a prime exists by Dirichlet's theorem). Since gcd(n, phi(p)) > 1 there exists b such that 1 < b < p and b^n == 1 (mod p). Then x = b + y*p for suitable y has x^n == 1 (mod p^2), and x == b (mod p), i.e., (x^n1)/(x1) is divisible by p^2. Therefore a(n) <= x < p^2.  Robert Israel, Jul 24 2014


LINKS

Table of n, a(n) for n=2..60.


EXAMPLE

a(17)=164 because (164^17  1)/163 is not squarefree (is multiple of 103^2), and 164 is the minimal number with that property.


MAPLE

A:= proc(n) local x, F;
for x from 2 do F:= ifactors((x^n1)/(x1), easy)[2];
if max(seq(f[2], f=F)) >= 2
then return x
fi
od
end proc;
seq(A(n), n=2..50); # Robert Israel, Jul 24 2014


PROG

(PARI) for(n=2, 100, b=2; while(issquarefree((b^n1)/(b1)), b++); print1(b, ", "))


CROSSREFS

Sequence in context: A082056 A082057 A161687 * A120647 A131635 A324554
Adjacent sequences: A245495 A245496 A245497 * A245499 A245500 A245501


KEYWORD

nonn,more


AUTHOR

Jeppe Stig Nielsen, Jul 24 2014


STATUS

approved



