The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245496 a(n) = n! * [x^n] (exp(x)+x)^n. 4
 1, 2, 10, 87, 1096, 18045, 365796, 8793337, 244327616, 7701562377, 271493172100, 10582453248741, 451909972458000, 20980984760560045, 1052197311966267572, 56683993296812515425, 3264626390205804733696, 200168726219982496336401, 13017989155680578824221060 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of ways to place n labeled balls (colored red and blue) into n labeled bins so that if a blue ball occupies a bin then there are no other balls with it. - Geoffrey Critzer, Jan 30 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) ~ (1+exp(-1))^(n+1/2) * n^n. E.g.f.: 1 / ((1 - x) * (1 + LambertW(-x/(1 - x)))). - Ilya Gutkovskiy, Jan 25 2020 MATHEMATICA Table[n!*SeriesCoefficient[(E^x+x)^n, {x, 0, n}], {n, 0, 20}] Flatten[{1, Table[n!+Sum[Binomial[n, j]^2*(n-j)^(n-j)*j!, {j, 0, n-1}], {n, 1, 20}]}] PROG (PARI) seq(n)={Vec(serlaplace(1/((1 - x) * (1 + lambertw(-x/(1 - x) + O(x*x^n))))), -(n+1))} \\ Andrew Howroyd, Jan 25 2020 CROSSREFS Cf. A231797, A245493, A245405. Sequence in context: A208833 A145082 A295836 * A185388 A245009 A306404 Adjacent sequences:  A245493 A245494 A245495 * A245497 A245498 A245499 KEYWORD nonn,easy AUTHOR Vaclav Kotesovec, Jul 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 12:43 EST 2020. Contains 332280 sequences. (Running on oeis4.)