This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245455 Number of minimax elements in the affine Weyl group of the Lie algebra so(2n). 3
 1, 3, 4, 9, 23, 61, 166, 459, 1284, 3623, 10292, 29395, 84327, 242807, 701314, 2031085, 5895951, 17150013, 49975428, 145862571, 426337773, 1247741271, 3655973226, 10723668081, 31485145902, 92524150845, 272120203908, 800931753629, 2359038637409, 6952768502473 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A005773 for the number of minimax elements in the affine Weyl group of the Lie algebra so(2n+1). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 D. I. Panyushev, Ideals of Heisenberg type and minimax elements of affine Weyl groups, arXiv:math/0311347 [math.RT], Lie Groups and Invariant Theory, Amer. Math. Soc. Translations, Series 2, Volume 213, (2005), ed. E. Vinberg FORMULA a(n) = A005773(n-1) + 2*A005773(n-2). O.g.f.: x/2*(1+2*x)*( 1 + sqrt(1-2*x-3*x^2)/(1-3*x) ). a(n) ~ 5*3^(n-5/2) / sqrt(Pi*n). - Vaclav Kotesovec, Jul 25 2014 (-n+1)*a(n) +4*(1)*a(n-1) +7*(n-3)*a(n-2) +6*(n-5)*a(n-3)=0. - R. J. Mathar, Sep 06 2016 (5*n-4)*(n-1)*a(n) +2*(-5*n^2+9*n-10)*a(n-1) -3*(5*n+1)*(n-4)*a(n-2)=0. - R. J. Mathar, Sep 06 2016 MAPLE A245455 := proc(n)     coeftayl(x/2*(1+2*x)*(1+sqrt(1-2*x-3*x^2)/(1-3*x)), x=0, n); end proc: seq(A245455(n), n=1..30); # Wesley Ivan Hurt, Jul 26 2014 MATHEMATICA Rest[CoefficientList[Series[x/2*(1+2*x)*(1+Sqrt[1-2*x-3*x^2]/(1-3*x)), {x, 0, 20}], x]] (* Vaclav Kotesovec, Jul 25 2014 *) CROSSREFS Cf. A005773. Sequence in context: A032789 A089243 A299123 * A296265 A034921 A038222 Adjacent sequences:  A245452 A245453 A245454 * A245456 A245457 A245458 KEYWORD nonn,easy AUTHOR Peter Bala, Jul 22 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 12:30 EDT 2019. Contains 323568 sequences. (Running on oeis4.)