The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245422 Decimal expansion of the coefficient c appearing in the expression of the asymptotic expected shortest cycle in a random n-cyclation as c*sqrt(n). 1
 1, 4, 5, 7, 2, 7, 0, 8, 7, 9, 2, 7, 3, 6, 5, 3, 8, 5, 3, 6, 9, 4, 4, 5, 4, 0, 6, 8, 1, 2, 0, 0, 4, 7, 0, 5, 9, 6, 6, 0, 5, 3, 0, 0, 2, 0, 2, 3, 5, 2, 2, 4, 6, 5, 9, 2, 1, 3, 2, 9, 7, 0, 8, 0, 7, 3, 9, 7, 9, 8, 3, 7, 3, 9, 7, 3, 2, 2, 0, 0, 0, 1, 8, 2, 0, 5, 8, 7, 9, 5, 8, 3, 0, 9, 6, 8, 4, 0, 3, 4, 5, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 35. Nicholas Pippenger, Random cyclations, arXiv:math /0408031 [math.CO] FORMULA (sqrt(Pi)/2)*integral_{0..infinity} exp(-x - Ei(-x)/2), where Ei is the exponential integral function. EXAMPLE 1.457270879273653853694454068120047059660530020235224659213297... MATHEMATICA digits = 102; (Sqrt[Pi]/2)*NIntegrate[Exp[-x - ExpIntegralEi[-x]/2], {x, 0, Infinity}, WorkingPrecision -> digits+10] // RealDigits[#, 10, digits]& // First CROSSREFS Cf. A143297 (analog in the case of the expected *longest* cycle in a random cyclation). Sequence in context: A322711 A057055 A177883 * A272005 A274984 A114343 Adjacent sequences:  A245419 A245420 A245421 * A245423 A245424 A245425 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Sep 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 15:26 EDT 2021. Contains 343154 sequences. (Running on oeis4.)