login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245405 Number A(n,k) of endofunctions on [n] such that no element has a preimage of cardinality k; square array A(n,k), n>=0, k>=0, read by antidiagonals. 14
1, 1, 1, 1, 0, 2, 1, 1, 2, 6, 1, 1, 2, 3, 24, 1, 1, 4, 9, 40, 120, 1, 1, 4, 24, 76, 205, 720, 1, 1, 4, 27, 208, 825, 2556, 5040, 1, 1, 4, 27, 252, 2325, 10206, 24409, 40320, 1, 1, 4, 27, 256, 3025, 31956, 143521, 347712, 362880, 1, 1, 4, 27, 256, 3120, 44406, 520723, 2313200, 4794633, 3628800 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FORMULA

A(n,k) = n! * [x^n] (exp(x)-x^k/k!)^n.

EXAMPLE

Square array A(n,k) begins:

0 :   1,    1,     1,     1,     1,     1,     1, ...

1 :   1,    0,     1,     1,     1,     1,     1, ...

2 :   2,    2,     2,     4,     4,     4,     4, ...

3 :   6,    3,     9,    24,    27,    27,    27, ...

4 :  24,   40,    76,   208,   252,   256,   256, ...

5 : 120,  205,   825,  2325,  3025,  3120,  3125, ...

6 : 720, 2556, 10206, 31956, 44406, 46476, 46650, ...

MAPLE

b:= proc(n, i, k) option remember; `if`(n=0 and i=0, 1,

      `if`(i<1, 0, add(`if`(j=k, 0, b(n-j, i-1, k)*

       binomial(n, j)), j=0..n)))

    end:

A:= (n, k)-> b(n$2, k):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

nn = n; f[m_]:=Flatten[Table[m[[j, i - j + 1]], {i, 1, Length[m]}, {j, 1, i}]]; f[Transpose[Table[Prepend[Table[n! Coefficient[Series[(Exp[x] -x^k/k!)^n, {x, 0, nn}], x^n], {n, 1, 10}], 1], {k, 0, 10}]]] (* Geoffrey Critzer, Jan 31 2015 *)

CROSSREFS

Column k=0-10 give: A000142, A231797, A245406, A245407, A245408, A245409, A245410, A245411, A245412, A245413, A245414.

Main diagonal gives A061190.

A(n,n+1) gives A000312.

Sequence in context: A163982 A246661 A246660 * A233543 A156588 A278543

Adjacent sequences:  A245402 A245403 A245404 * A245406 A245407 A245408

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 08:44 EST 2019. Contains 329318 sequences. (Running on oeis4.)