

A245370


Number of compositions of n into parts 3, 5 and 9.


0



1, 0, 0, 1, 0, 1, 1, 0, 2, 2, 1, 3, 3, 3, 6, 5, 6, 11, 10, 13, 19, 19, 27, 35, 37, 52, 65, 74, 100, 121, 145, 192, 230, 282, 365, 440, 548, 695, 843, 1058, 1327, 1621, 2035, 2535, 3119, 3910, 4851, 5997, 7503, 9297, 11528, 14389, 17829, 22150, 27596, 34208, 42536, 52928, 65655, 81660, 101525, 126020, 156738, 194776, 241888
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,9


LINKS

Table of n, a(n) for n=0..64.
Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,0,0,1).


FORMULA

G.f.: 1/(1x^3x^5x^9).
a(n) = a(n3) + a(n5) + a(n9).


EXAMPLE

a(28)=100 The compositions of n into parts 3,5 and 9 are the permutations of (9955)(these are 4!/2!2!=6), (555553) (these are 6!/5!=6), (955333) (these are 6!/3!2!=60), (55333333) (these are 8!/6!2!=28).


PROG

(PARI) Vec( 1/(1x^3x^5x^9) +O(x^66) ) \\ Joerg Arndt, Aug 24 2014


CROSSREFS

Cf. A079957, A245367, A245369.
Sequence in context: A240127 A109524 A191521 * A321341 A284549 A200779
Adjacent sequences: A245367 A245368 A245369 * A245371 A245372 A245373


KEYWORD

nonn,easy


AUTHOR

David Neil McGrath, Aug 24 2014


STATUS

approved



