login
A245369
Number of compositions of n into parts 3, 5 and 8.
1
1, 0, 0, 1, 0, 1, 1, 0, 3, 1, 1, 5, 1, 5, 7, 2, 13, 9, 8, 25, 12, 26, 41, 22, 64, 62, 56, 130, 96, 146, 233, 174, 340, 391, 376, 703, 661, 862, 1327, 1211, 1905, 2379, 2449, 3935, 4251, 5216, 7641, 7911, 11056, 14271, 15576, 22632, 26433, 31848, 44544, 49920, 65536, 85248, 97344, 132712, 161601, 194728, 262504, 308865
OFFSET
0,9
FORMULA
G.f.: 1/(1-x^3-x^5-x^8).
a(n) = a(n-3) + a(n-5) + a(n-8).
EXAMPLE
a(19)=25. The compositions of 19 into parts 3, 5, and 8 are the permutations of (883) (these are 3!/2!=3), (8533) (these are 4!/2!=12), and (55333) (these are 5!/3!2!=10).
MATHEMATICA
LinearRecurrence[{0, 0, 1, 0, 1, 0, 0, 1}, {1, 0, 0, 1, 0, 1, 1, 0}, 70] (* Harvey P. Dale, Sep 05 2022 *)
PROG
(PARI) Vec( 1/(1-x^3-x^5-x^8) +O(x^66) ) \\ Joerg Arndt, Aug 25 2014
CROSSREFS
Sequence in context: A131086 A201669 A069002 * A076334 A348641 A014475
KEYWORD
nonn,easy
AUTHOR
David Neil McGrath, Aug 23 2014
STATUS
approved