login
Largest number k such that d_1^j + d_2^j + … + d_r^j is prime for all j = 1, 2, .. k, or 0 if no such k exists, where d_1, d_2, … d_r are the digits of n. a(n) = -1 if k is infinite.
0

%I #7 Jul 19 2014 09:48:33

%S 0,1,1,0,1,0,1,0,0,0,-1,2,0,2,0,2,0,0,0,1,2,0,2,0,2,0,0,0,1,1,0,2,0,1,

%T 0,0,0,2,0,0,2,0,1,0,0,0,1,0,2,1,0,2,0,0,0,2,0,2,0,0,2,0,0,0,2,0,1,0,

%U 0,1,0,0,0,1,0,1,0,0,0,0,0,0,2,0,2,0,0,0,1,0,0,1,0,2

%N Largest number k such that d_1^j + d_2^j + … + d_r^j is prime for all j = 1, 2, .. k, or 0 if no such k exists, where d_1, d_2, … d_r are the digits of n. a(n) = -1 if k is infinite.

%C If a(n) = K and reorder the digits of n to make a new number, n'. Thus, a(n') = K.

%F a(A031974(n)) = -1 for all n.

%e 1^1 + 2^1 = 3 is prime.

%e 1^2 + 2^2 = 5 is prime.

%e 1^3 + 2^3 = 9 is not prime.

%e So a(12) and a(21) = 2.

%o (PARI) a(n) = for(k=1,10^3,d=digits(n);if(!ispseudoprime(sum(i=1,#d,d[i]^k)),return(k-1)));return(-1)

%o n=1;while(n<100,print1(a(n),", "); n++)

%K sign,base

%O 1,12

%A _Derek Orr_, Jul 18 2014