0,3

The base 8/3 expansion is unique and thus the sum of digits function is well-defined.

Table of n, a(n) for n=0..74.

a(n) = A007953(A053829(n))

In base 8/3 the number 14 is represented by 36 and so a(14) = 3 + 6 = 9.

(Sage)

def base83sum(n):

....L=[n]

....i=1

....while L[i-1]>=8:

........x=L[i-1]

........L[i-1]=x.mod(8)

........L.append(3*floor(x/8))

........i+=1

....return sum(L)

[base83sum(w) for w in [0..200]]

Cf. A007953, A000120, A024645, A053829, A244040.

Sequence in context: A071074 A279648 A066323 * A278059 A115871 A138221

Adjacent sequences: A245344 A245345 A245346 * A245348 A245349 A245350

nonn,base

Hailey R. Olafson, Jul 18 2014

approved