

A245319


Numbers n such that n divides 2^n + 8.


5



1, 2, 4, 5, 6, 8, 12, 18, 24, 36, 72, 88, 198, 228, 1032, 2412, 2838, 4553, 5958, 10008, 24588, 25938, 46777, 65538, 75468, 82505, 130056, 143916, 200364, 540738, 598818, 750852, 797478, 923628, 958212, 1151538, 1250568, 1505388, 1647396, 2365128, 2964036, 3490028, 3704418, 3844808
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..929 (n = 1..58 from Harvey P. Dale)
OEIS Wiki, 2^n mod n


EXAMPLE

2^4+8 = 24 is divisible by 4. Thus 4 is a member of this sequence.
2^5+8 = 40 is divisible by 5. Thus 5 is a member of this sequence.


MAPLE

select(n > 2 &^ n + 8 mod n = 0, [$1..10^6]); # Robert Israel, Jul 18 2014


MATHEMATICA

Join[Select[Range[7], Divisible[2^#+8, #]&], Select[Range[4000000], Abs[ PowerMod[ 2, #, #]#]==8&]] (* Harvey P. Dale, May 25 2016 *)


PROG

(PARI)
for(n=1, 10^9, if(Mod(2, n)^n==Mod(8, n), print1(n, ", ")))


CROSSREFS

Cf. A015922.
Sequence in context: A119792 A085834 A255577 * A037081 A270877 A303909
Adjacent sequences: A245316 A245317 A245318 * A245320 A245321 A245322


KEYWORD

nonn


AUTHOR

Derek Orr, Jul 17 2014


STATUS

approved



