The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245302 Circle curvature (rounded down) inscribed between a unit circle and a circumscribed regular n-gon. 1
 3, 5, 9, 13, 19, 25, 32, 39, 48, 57, 67, 78, 90, 103, 116, 130, 145, 161, 178, 195, 213, 232, 252, 273, 294, 317, 340, 364, 388, 414, 440, 467, 495, 524, 554, 584, 615, 647, 680, 714, 748, 783, 820, 856, 894, 933, 972, 1012, 1053, 1095, 1137, 1181, 1225, 1270, 1316, 1362 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS The curvature is the reciprocal of the radius of any one of the n circles externally tangent to the unit circle and internally tangent to two consecutive sides of the circumscribed regular n-gon. - Michael Somos, Aug 05 2014 a(n) + 1 is the curvature (rounded down) of a circle inscribed between a unit circle and an inscribed regular n-gon. - Kival Ngaokrajang, Jul 08 2015 LINKS Kival Ngaokrajang, Illustration of initial terms Kival Ngaokrajang, The circles between a unit circle and a inscribed regular n-gon Eric Weisstein's World of Mathematics, Incircle FORMULA a(n) = floor(sin(Pi/(2*n))^-2 - 1) for n>2. - Michael Somos, Aug 05 2014 MAPLE A245302:=n->floor(sin(Pi/(2*n))^(-2)-1): seq(A245302(n), n=3..100); # Wesley Ivan Hurt, Jul 18 2015 MATHEMATICA f[n_] := Block[{a, b, c, d, g, h}, a = Pi(n - 2)/(2n); b = a/2 + Pi/4; c = 1/Tan[a]; d = 1/Tan[b]; g = 2 Tan[b - a]; h = (2c - 2d + g)/2; Floor[1/Sqrt[((h - c + d)^2*(h - g))/h]]]; f[3] = 3; Array[f, 60, 3] (* Robert G. Wilson v, Jul 25 2014 *) PROG (PARI) {for (n=3, 100, x1=Pi*(n-2)/(2*n); x2=x1/2+Pi/4; b1=1/tan(x1); b2=1/tan(x2); a=b1-b2; z=x2-x1; c=2*tan(z); s=(2*a+c)/2; r=sqrt(((s-a)^2*(s-c))/s); an=floor(1/r); print1(an, ", "))} (PARI) {a(n) = if( n<4, 3*(n==3), floor(sin(Pi/2 / n)^-2) - 1)}; /* Michael Somos, Aug 05 2014 */ CROSSREFS Sequence in context: A004132 A207187 A065802 * A118028 A209974 A099392 Adjacent sequences:  A245299 A245300 A245301 * A245303 A245304 A245305 KEYWORD nonn,easy AUTHOR Kival Ngaokrajang, Jul 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 12:10 EDT 2020. Contains 333125 sequences. (Running on oeis4.)