login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245298 Decimal expansion of the Landau-Kolmogorov constant C(5,3) for derivatives in the case L_infinity(infinity, infinity). 0
1, 1, 1, 9, 4, 2, 3, 7, 3, 1, 7, 3, 5, 1, 0, 7, 6, 1, 1, 6, 2, 9, 7, 1, 1, 0, 8, 2, 0, 8, 1, 2, 6, 1, 0, 4, 1, 2, 4, 9, 9, 8, 5, 5, 6, 7, 0, 5, 8, 6, 0, 7, 0, 8, 6, 5, 2, 0, 9, 8, 2, 7, 9, 9, 1, 3, 1, 5, 4, 2, 2, 9, 2, 2, 9, 6, 9, 0, 4, 5, 1, 5, 2, 5, 2, 6, 2, 8, 6, 5, 9, 6, 1, 3, 0, 8, 5, 2, 2, 9, 2, 9, 5, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

See A245198.

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

LINKS

Table of n, a(n) for n=1..104.

Eric Weisstein's MathWorld, Landau-Kolmogorov Constants

Eric Weisstein's MathWorld, Favard Constants

FORMULA

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).

C(5,3) = (1/2)*(15/2)^(2/5).

EXAMPLE

1.11942373173510761162971108208126104124998556705860708652098279913...

MATHEMATICA

a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[5, 3], 10, 104] // First

CROSSREFS

Cf. A050970, A050971, A244091, A245198.

Sequence in context: A011313 A319530 A318410 * A122952 A039663 A155535

Adjacent sequences:  A245295 A245296 A245297 * A245299 A245300 A245301

KEYWORD

nonn,cons,easy

AUTHOR

Jean-Fran├žois Alcover, Jul 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 08:48 EDT 2020. Contains 333313 sequences. (Running on oeis4.)