login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245292 Decimal expansion of 'mu', an isoperimetric constant associated with the study of a vibrating, homogeneous plate clamped at the boundary of the unit disk. 2
0, 0, 9, 5, 8, 1, 9, 3, 0, 2, 6, 7, 8, 3, 9, 3, 1, 7, 5, 4, 9, 0, 2, 3, 2, 9, 3, 2, 1, 0, 7, 7, 8, 4, 3, 8, 7, 5, 8, 6, 9, 4, 4, 9, 5, 2, 9, 7, 3, 8, 5, 5, 1, 6, 1, 5, 7, 1, 3, 5, 2, 1, 6, 9, 3, 5, 8, 2, 0, 7, 3, 6, 1, 0, 2, 0, 2, 6, 7, 8, 4, 9, 1, 1, 2, 8, 8, 1, 7, 9, 0, 6, 6, 8, 7, 9, 5, 0, 8, 3, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric constants, p. 222.

LINKS

Table of n, a(n) for n=0..100.

FORMULA

mu = 1 / theta^4, where theta is the smallest positive root of I1(t)*J0(t) + I0(t)*J1(t) = 0, with I0, I1, J0, J1, Bessel functions.

EXAMPLE

0.0095819302678393175490232932107784387586944952973855161571352169358207361...

MATHEMATICA

theta = t /. FindRoot[BesselJ[0, t]*BesselI[1, t] + BesselI[0, t]*BesselJ[1, t] == 0, {t, 3}, WorkingPrecision -> 100]; mu = 1/theta^4; Join[{0, 0}, RealDigits[mu] // First]

CROSSREFS

Cf. A242402(theta).

Sequence in context: A117019 A155692 A011203 * A203081 A309645 A146483

Adjacent sequences:  A245289 A245290 A245291 * A245293 A245294 A245295

KEYWORD

nonn,cons,easy

AUTHOR

Jean-Fran├žois Alcover, Jul 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 22:44 EDT 2019. Contains 328291 sequences. (Running on oeis4.)