login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245288 a(n) = (4*n^2 - 2*n - 1 + (2*n^2 - 2*n + 1)*(-1)^n)/16. 3
0, 0, 1, 1, 5, 3, 12, 6, 22, 10, 35, 15, 51, 21, 70, 28, 92, 36, 117, 45, 145, 55, 176, 66, 210, 78, 247, 91, 287, 105, 330, 120, 376, 136, 425, 153, 477, 171, 532, 190, 590, 210, 651, 231, 715, 253, 782, 276, 852, 300, 925, 325, 1001, 351, 1080, 378, 1162 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

For even n, the sequence gives the sum of the largest parts of the partitions of n into two parts. For odd n, the sequence gives the sum of the smallest parts of the partitions of n into two parts (see example).

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..3000 (first 56 terms from Wesley Ivan Hurt)

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).

FORMULA

G.f.: x^2*(1+x+2*x^2)/(1-x^2)^3.

a(n) = 3*a(n-2)-3*a(n-4)+a(n-6), a(0)=a(1)=0, a(2)=a(3)=1, a(4)=5, a(5)=3.

a(n) = (4*n^2 - 2*n - 1 + (2*n^2 - 2*n + 1)*(-1)^n)/16.

a(n) = floor(n/2) * ((1+floor(n/2))*(n mod 2) + (2*n-1-floor(n/2))*((n+1) mod 2))/2.

EXAMPLE

a(4) = 5; the partitions of 4 into two parts are: (3,1), (2,2). Since 4 is even, we add the largest parts in these partitions to get 5.

a(5) = 3; the partitions of 5 into two parts are: (4,1), (3,2). Since 5 is odd, we add the smallest parts in the partitions to get 3.

MAPLE

A245288:=n->(4*n^2-2*n-1+(2*n^2-2*n+1)*(-1)^n)/16: seq(A245288(n), n=0..50);

MATHEMATICA

Table[(4n^2 - 2n - 1 + (2n^2 - 2n + 1) (-1)^n)/16, {n, 0, 50}] (* or *)

CoefficientList[Series[x^2 (1 + x + 2*x^2)/(1 - x^2)^3, {x, 0, 50}], x]

PROG

(MAGMA) [(4*n^2-2*n-1+(2*n^2-2*n+1)*(-1)^n)/16 : n in [0..50]];

(PARI) concat([0, 0], Vec(x^2*(1+x+2*x^2)/(1-x^2)^3 + O(x^100))) \\ Colin Barker, Jul 25 2014

(GAP) a := List([0..10^2], n->(4*n^2-2*n-1+(2*n^2-2*n+1)*(-1)^n)/16); # Muniru A Asiru, Feb 02 2018

CROSSREFS

Cf. A245467, A000326 (bisection), A000217 (bisection).

Sequence in context: A237116 A141234 A130180 * A104587 A300940 A131939

Adjacent sequences:  A245285 A245286 A245287 * A245289 A245290 A245291

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Jul 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 13:51 EDT 2019. Contains 328093 sequences. (Running on oeis4.)