This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245286 Decimal expansion of the Landau-Kolmogorov constant C(4,1) for derivatives in L_2(0, infinity). 2
 2, 2, 7, 4, 3, 2, 2, 3, 5, 0, 9, 7, 9, 9, 3, 7, 1, 1, 8, 1, 6, 0, 6, 4, 4, 3, 1, 2, 0, 6, 6, 9, 7, 8, 3, 9, 8, 9, 6, 6, 6, 2, 8, 5, 6, 7, 9, 9, 0, 1, 0, 6, 9, 7, 1, 8, 0, 6, 1, 1, 9, 9, 1, 7, 1, 4, 8, 4, 6, 4, 8, 1, 7, 0, 5, 8, 8, 1, 1, 5, 3, 1, 4, 8, 7, 0, 3, 6, 5, 9, 4, 6, 4, 5, 5, 2, 1, 0, 9, 2, 2, 3, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A244091. REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 214. LINKS Eric Weisstein's MathWorld, Landau-Kolmogorov Constants FORMULA (1/a*(3^(1/4) + 3^(-3/4)))^(1/2), where a is the smallest positive root of x^8 - 6*x^4 - 8*x^2 + 1. EXAMPLE 2.274322350979937118160644312066978398966628567990106971806119917148464817... MATHEMATICA a = Root[x^8 - 6*x^4 - 8*x^2 + 1, 3]; RealDigits[(1/a*(3^(1/4) + 3^(-3/4)))^(1/2), 10, 103] // First CROSSREFS Cf. A244091, A245287. Sequence in context: A102780 A227828 A115025 * A075428 A277199 A116077 Adjacent sequences:  A245283 A245284 A245285 * A245287 A245288 A245289 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jul 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 05:25 EDT 2019. Contains 326139 sequences. (Running on oeis4.)