login
A245286
Decimal expansion of the Landau-Kolmogorov constant C(4,1) for derivatives in L_2(0, infinity).
2
2, 2, 7, 4, 3, 2, 2, 3, 5, 0, 9, 7, 9, 9, 3, 7, 1, 1, 8, 1, 6, 0, 6, 4, 4, 3, 1, 2, 0, 6, 6, 9, 7, 8, 3, 9, 8, 9, 6, 6, 6, 2, 8, 5, 6, 7, 9, 9, 0, 1, 0, 6, 9, 7, 1, 8, 0, 6, 1, 1, 9, 9, 1, 7, 1, 4, 8, 4, 6, 4, 8, 1, 7, 0, 5, 8, 8, 1, 1, 5, 3, 1, 4, 8, 7, 0, 3, 6, 5, 9, 4, 6, 4, 5, 5, 2, 1, 0, 9, 2, 2, 3, 9
OFFSET
1,1
COMMENTS
See A244091.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 214.
FORMULA
(1/a*(3^(1/4) + 3^(-3/4)))^(1/2), where a is the smallest positive root of x^8 - 6*x^4 - 8*x^2 + 1.
EXAMPLE
2.274322350979937118160644312066978398966628567990106971806119917148464817...
MATHEMATICA
a = Root[x^8 - 6*x^4 - 8*x^2 + 1, 3]; RealDigits[(1/a*(3^(1/4) + 3^(-3/4)))^(1/2), 10, 103] // First
CROSSREFS
Sequence in context: A102780 A227828 A115025 * A075428 A277199 A116077
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved