login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245262 Decimal expansion of Dawson's integral at the inflection point. 3
4, 2, 7, 6, 8, 6, 6, 1, 6, 0, 1, 7, 9, 2, 8, 7, 9, 7, 4, 0, 6, 7, 5, 5, 6, 4, 2, 1, 1, 2, 6, 9, 5, 1, 9, 1, 9, 3, 6, 2, 4, 5, 5, 3, 4, 5, 2, 7, 8, 1, 9, 5, 8, 8, 7, 6, 3, 6, 0, 6, 0, 9, 7, 1, 9, 0, 3, 5, 2, 0, 5, 5, 9, 0, 8, 8, 3, 4, 0, 0, 3, 6, 9, 6, 4, 3, 9, 6, 9, 8, 3, 4, 2, 8, 4, 5, 8, 8, 9, 3, 4, 9, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.9 Hyperbolic volume constants, p. 512.

LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..2000

Eric Weisstein's MathWorld, Dawson's Integral

Wikipedia, Dawson function

FORMULA

Equals xinfl/(2*xinfl^2-1), xinfl = A133843. - Stanislav Sykora, Sep 17 2014

EXAMPLE

0.427686616017928797406755642112695191936245534527819588763606097190352...

MATHEMATICA

digits = 104; DawsonF[x_] := Sqrt[Pi]*Erfi[x]/(2*Exp[x^2]); xi = x /. FindRoot[DawsonF''[x], {x, 3/2}, WorkingPrecision -> digits + 10]; RealDigits[DawsonF[xi], 10, digits] // First

PROG

(PARI) Erfi(z) = -I*(1.0-erfc(I*z));

Dawson(z) = 0.5*sqrt(Pi)*exp(-z*z)*Erfi(z); \\ same as F(x)=D_+(x) D2Dawson(z) = -2.0*(z + (1.0-2.0*z*z)*Dawson(z)); \\ 2nd derivative

xinfl = solve(z=1.0, 2.0, real(D2Dawson(z)));

x = Dawson(xinfl) \\ Stanislav Sykora, Sep 17 2014

CROSSREFS

Cf. A133841, A133842, A133843, A247445.

Sequence in context: A143370 A016695 A125271 * A092314 A237750 A249652

Adjacent sequences:  A245259 A245260 A245261 * A245263 A245264 A245265

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Jul 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 12:02 EDT 2017. Contains 289669 sequences.