login
A245232
Semiprimes of the form (2*n^3+n)/3.
1
6, 85, 146, 489, 1469, 3281, 4579, 6181, 8119, 19871, 23969, 99269, 238631, 439031, 470009, 536269, 961969, 1240619, 1365631, 2579981, 2887219, 3105031, 3696881, 3953221, 5096981, 5413801, 7002379, 8006069, 8874781, 22050881, 23310631, 27854731, 34596869, 40465769
OFFSET
1,1
COMMENTS
Semiprimes in A005900.
The n-th octahedral number = (2*n^3+n)/3.
LINKS
EXAMPLE
n=5: (2*n^3 + n)/3 = 85 = 5 * 17 which is semiprime. Hence 85 appears in the sequence.
n=9: (2*n^3 + n)/3 = 489 = 3 * 163 which is semiprime. Hence 489 appears in the sequence.
MAPLE
select(t -> numtheory:-bigomega(t)=2, [seq((2*n^3+n)/3, n=1..1000)]); # Robert Israel, Jul 15 2014
MATHEMATICA
Select[Table[(2*n^3 + n)/3, {n, 500}], PrimeOmega[#] == 2 &]
PROG
(PARI) s=[]; for(n=1, 500, m=(2*n^3+n); if(m%3==0 && bigomega(m\3)==2, s=concat(s, m\3))); s \\ Colin Barker, Jul 15 2014
CROSSREFS
Sequence in context: A331014 A295229 A330849 * A284522 A167252 A290011
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jul 14 2014
STATUS
approved