login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245223 Decimal expansion of inf{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A054385, else f(n,x) = 1/x. 5
3, 6, 9, 3, 0, 6, 3, 9, 6, 4, 5, 3, 0, 1, 2, 3, 0, 5, 9, 7, 2, 7, 8, 1, 6, 9, 3, 6, 8, 7, 1, 9, 0, 6, 6, 9, 4, 4, 5, 6, 3, 1, 3, 3, 1, 6, 9, 0, 3, 8, 4, 9, 6, 0, 5, 3, 1, 0, 9, 1, 0, 0, 2, 8, 8, 6, 3, 3, 4, 6, 9, 2, 4, 5, 3, 0, 2, 7, 0, 1, 2, 6, 2, 9, 8, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See Comments at A245215.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

FORMULA

a(n)*sup{f(n,1)} = 1.

EXAMPLE

c = 0.36930639645301230597278169368719066944...  The first 16 numbers f(n,1) comprise S(16) = {1, 2, 1/2, 3/2, 5/2, 2/5, 7/5, 12/5, 5/12, 17/12, 12/17, 29/17}; min(S(16)) = 17/46 = 0.36956... and max(S(12)) = 46/17 = 2.7058...

MATHEMATICA

tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = E/(E-1); w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; $RecursionLimit = tmpRec;

m = Min[N[Table[s[n], {n, 1, 4000}], 300]]

RealDigits[m]  (* A245223 *)

(* Peter J. C. Moses, Jul 04 2014 *)

CROSSREFS

Cf. A226080 (infinite Fibonacci tree), A245215, A245217, A245220, A245224.

Sequence in context: A094561 A099679 A013663 * A180593 A271742 A195771

Adjacent sequences:  A245220 A245221 A245222 * A245224 A245225 A245226

KEYWORD

nonn,cons,easy

AUTHOR

Clark Kimberling, Jul 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 06:17 EDT 2020. Contains 333119 sequences. (Running on oeis4.)