login
Trajectory of 1 under repeated applications of the morphism 0->12, 1->12, 2->00.
1

%I #22 Oct 02 2016 10:25:37

%S 1,2,0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,2,0,0,1,2,1,2,1,2,0,0,1,2,1,2,1,2,

%T 0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,2,0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,2,0,0,

%U 1,2,1,2,1,2,0,0,1,2,0,0,1,2,0,0,1,2,1,2,1,2,0,0,1,2,1,2,1,2,0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,2,0,0,1,2,1,2

%N Trajectory of 1 under repeated applications of the morphism 0->12, 1->12, 2->00.

%C This is the 2-block coding of the period-doubling word A096268.

%H A. Parreau, M. Rigo, E. Rowland, E. Vandomme, <a href="http://arxiv.org/abs/1405.3532">A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences</a>, arXiv:1405.3532 [cs.FL], 2014-2015. See Example 16.

%H A. Parreau, M. Rigo, E. Rowland, E. Vandomme, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p27/0">A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences</a>, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015), Paper #P1.27. See Example 16.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%t (* This gives the first 128 terms. *)

%t SubstitutionSystem[{0 -> {1, 2}, 1 -> {1, 2}, 2 -> {0, 0}}, {1}, {{7}}] (* _Eric Rowland_, Oct 02 2016 *)

%Y See A091952 for a very similar sequence. Cf. A096268.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jul 21 2014

%E More terms from _Eric Rowland_, Oct 02 2016