login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245151 Number T(n,k) of n-node unlabeled rooted trees with thickening limbs and root outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows. 12
1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 1, 0, 5, 1, 0, 0, 1, 0, 7, 3, 1, 0, 0, 1, 0, 12, 3, 1, 0, 0, 0, 1, 0, 17, 8, 1, 1, 0, 0, 0, 1, 0, 28, 9, 3, 1, 0, 0, 0, 0, 1, 0, 42, 21, 3, 1, 1, 0, 0, 0, 0, 1, 0, 69, 28, 5, 1, 1, 0, 0, 0, 0, 0, 1, 0, 105, 56, 9, 3, 1, 1, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

In a rooted tree with thickening limbs the outdegree of a parent node is smaller than or equal to the outdegree of any of its non-leaf child nodes.

T(n+1,1) = Sum_{k=0..n-1} T(n,k) for n>=1.

T(n+1,n) = T(2n+1,n) = 1 for n>=0.

T(n,1+floor((n-1)/2)) = 0 for n>3.

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

EXAMPLE

The A245152(5) = 5 5-node rooted trees with thickening limbs sorted by root outdegree are:

: o   o     o   :     o   :    o    :

: |   |     |   :    / \  :  /( )\  :

: o   o     o   :   o   o : o o o o :

: |   |    /|\  :  / \    :         :

: o   o   o o o : o   o   :         :

: |  / \        :         :         :

: o o   o       :         :         :

: |             :         :         :

: o             :         :         :

:               :         :         :

: ------1------ : ---2--- : ---4--- :

Thus row 5 = [0, 3, 1, 0, 1].

Triangle T(n,k) begins:

1;

0,   1;

0,   1,  1;

0,   2,  0,  1;

0,   3,  1,  0, 1;

0,   5,  1,  0, 0, 1;

0,   7,  3,  1, 0, 0, 1;

0,  12,  3,  1, 0, 0, 0, 1;

0,  17,  8,  1, 1, 0, 0, 0, 1;

0,  28,  9,  3, 1, 0, 0, 0, 0, 1;

0,  42, 21,  3, 1, 1, 0, 0, 0, 0, 1;

0,  69, 28,  5, 1, 1, 0, 0, 0, 0, 0, 1;

0, 105, 56,  9, 3, 1, 1, 0, 0, 0, 0, 0, 1;

0, 176, 81, 12, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1;

MAPLE

b:= proc(n, i, h, v) option remember; `if`(n=0,

      `if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,

      `if`(n=v, 1, add(binomial(A(i, h)+j-1, j)*

       b(n-i*j, i-1, h, v-j), j=0..min(n/i, v)))))

    end:

A:= proc(n, k) option remember;

      `if`(n<2, n, add(b(n-1$2, j$2), j=k..n-1))

    end:

T:= (n, k)-> b(n-1$2, k$2):

seq(seq(T(n, k), k=0..n-1), n=1..20);

MATHEMATICA

b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i<1 || v<1 || n<v, 0, If[n == v, 1, Sum[Binomial[A[i, h] + j - 1, j]*b[n - i*j, i-1, h, v-j], {j, 0, Min[n/i, v]}]]]]; A[n_, k_] := A[n, k] = If[n<2, n, Sum[b[n-1, n-1, j, j], {j, k, n-1}]]; T[n_, k_] := b[n-1, n-1, k, k]; Table[ Table[T[n, k], {k, 0, n - 1}], {n, 1, 20}] // Flatten (* Jean-Fran├žois Alcover, Jan 27 2015, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000007(n-1), A245152(n-1), A245142, A245143, A245144, A245145, A245146, A245147, A245148, A245149, A245150.

Row sums give A245152.

Cf. A244657 (thinning limbs).

Sequence in context: A286470 A243055 A318371 * A243978 A106844 A125989

Adjacent sequences:  A245148 A245149 A245150 * A245152 A245153 A245154

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 13:06 EDT 2018. Contains 315130 sequences. (Running on oeis4.)