login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245079 Number of bipolar Boolean functions, that is, Boolean functions that are monotone or antimonotone in each argument. 0
2, 4, 14, 104, 2170, 230540, 499596550, 30907579915064, 5483950159845307762 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

A Boolean function is bipolar if and only if for each argument index i, the function is one of: (1) monotone in argument i, (2) antimonotone in argument i, (3) both monotone and antimonotone in argument i.

LINKS

Table of n, a(n) for n=0..8.

R. Baumann and H. Strass, On the number of bipolar Boolean functions, submitted.

G. Brewka and S. Woltran, Abstract dialectical frameworks, Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning. Pages 102--111. IJCAI/AAAI 2010.

FORMULA

a(n) = sum_{i=1..n}(2^i * C(n,i) * A006126(i)) + 2.

EXAMPLE

There are 2 bipolar Boolean functions in 0 arguments, the constants true and false.

All 4 Boolean functions in one argument are bipolar.

For 2 arguments, only equivalence and exclusive-or are not bipolar, 16-2=14.

CROSSREFS

Cf. A006126.

Sequence in context: A005737 A219767 A000609 * A167008 A238638 A240973

Adjacent sequences:  A245076 A245077 A245078 * A245080 A245081 A245082

KEYWORD

nonn,hard,more

AUTHOR

Hannes Strass, Jul 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 06:54 EDT 2017. Contains 292502 sequences.