This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245064 Primes p such that p minus its digit sum is a perfect cube. 2
 2, 3, 5, 7, 31, 37, 223, 227, 229, 743, 1741, 1747, 3391, 5851, 5857, 9281, 9283, 13841, 19709, 27011, 27017, 35963, 35969, 46681, 46687, 59341, 74101, 91141, 110603, 110609, 132679, 373273, 474581, 474583, 729023, 804383, 1061227, 1259743, 1259749, 1481573, 2000393 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS K. D. Bajpai and Jens Kruse Andersen, Table of n, a(n) for n = 1..10000 (first 274 terms from K. D. Bajpai) EXAMPLE 37 is in the sequence because it is prime. Also, 37 - (3 + 7 ) = 27 = 3^3: a perfect cube. 743 is in the sequence because it is prime. Also, 743 - (7 + 4 + 3) = 729 = 9^3: a perfect cube. MAPLE dmax:= 9; # to get all entries < 10^dmax cmax:= floor(10^(dmax/3)); count:= 0; for m from 0 to cmax do    for p from m^3 to m^3 + 9*dmax do       if p - convert(convert(p, base, 10), `+`) = m^3 and isprime(p) then          count:= count+1;          A[count]:= p;       fi    od od; {seq(A[i], i=1..count)}; # Robert Israel, Jul 15 2014 MATHEMATICA Select[Prime[Range[200000]], IntegerQ[CubeRoot[# - Apply[Plus, IntegerDigits[#]]]] &] PROG (PARI) digsum(n) = my(d=eval(Vec(Str(n)))); sum(i=1, #d, d[i]) s=[]; forprime(p=2, 2002000, if(ispower(p-digsum(p), 3), s=concat(s, p))); s \\ Colin Barker, Jul 15 2014 CROSSREFS Cf. A000578, A048519, A107288. Sequence in context: A297710 A287945 A238850 * A052014 A236255 A090711 Adjacent sequences:  A245061 A245062 A245063 * A245065 A245066 A245067 KEYWORD nonn,base AUTHOR K. D. Bajpai, Jul 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 04:21 EST 2019. Contains 319323 sequences. (Running on oeis4.)