OFFSET
0,2
FORMULA
G.f. satisfies:
(1) A(x) = 1 + Series_Reversion( (1+13*x - (1+x)^4)/(27*(1+x)) ).
(2) A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (12 + 27*x*A(x))^(3*n+1) / 13^(4*n+1).
(3) A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) = (12+27*x + G(x)^4)/13 is the g.f. of A120595.
a(n) ~ 3^(3*n - 7/2) / (2^(7/4) * sqrt(Pi) * n^(3/2) * (13 - 8*sqrt(2))^(n - 3/2)). - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
G.f.: A(x) = 1 + 3*x + 15*x^2 + 117*x^3 + 1158*x^4 + 12930*x^5 +...
Compare A(x)^4 to (13-27*x)*A(x):
A(x)^4 = 1 + 12*x + 114*x^2 + 1116*x^3 + 11895*x^4 + 136824*x^5 +...
(13-27*x)*A(x) = 13 + 12*x + 114*x^2 + 1116*x^3 + 11895*x^4 + 136824*x^5 +...
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[(1+13*x - (1+x)^4)/(27*(1+x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 27 2017 *)
PROG
(PARI) {a(n)=polcoeff(1 + serreverse( (1+13*x - (1+x)^4)/(27*(1+x +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=[1], Ax=1+x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^4 - (13-27*x)*Ax )/9 )[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 10 2014
STATUS
approved