login
A245021
Semiprimes whose digit sum is a perfect cube.
1
10, 26, 35, 62, 134, 143, 161, 206, 215, 305, 314, 323, 341, 413, 422, 611, 1007, 1043, 1115, 1133, 1142, 1205, 1214, 1241, 1313, 1322, 1403, 1502, 2033, 2042, 2051, 2105, 2123, 2231, 2321, 2402, 2501, 3005, 3113, 3131, 3401, 4022, 4031, 4103, 4121, 5102, 5111
OFFSET
1,1
COMMENTS
Semiprimes in A059094.
No a(n) have digit sum 27, because numbers with digit sum divisible by 9 are divisible by 9 and thus not semiprimes. The first member of the sequence with digit sum > 8 is 28999999 = a(1006). - Robert Israel, Jul 10 2014
LINKS
EXAMPLE
35 is in the sequence because 35 = 5 * 7 which is semiprime. Also, (3 + 5) = 8 = 2^3.
1043 is in the sequence because 1043 = 7 * 149 which is semiprime. Also, (1 + 0 + 4 + 3) = 8 = 2^3.
MAPLE
N:= 10000: # to get all terms up to N
maxj:= floor((9*(1+ilog10(N)))^(1/3)):
cubes:= {seq(j^3, j=1..maxj)}:
filter:= proc(n)
local s;
if numtheory:-bigomega(n) <> 2 then return false fi;
s:= convert(convert(n, base, 10), `+`);
member(s, cubes);
end proc:
select(filter, [$1..N]); # Robert Israel, Jul 10 2014
MATHEMATICA
sppcQ[n_]:=PrimeOmega[n]==2&&IntegerQ[Surd[Total[IntegerDigits[n]], 3]]; Select[Range[5200], sppcQ] (* Harvey P. Dale, Apr 07 2017 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Jul 09 2014
STATUS
approved