This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244993 Decimal expansion of phi_3(3) = sqrt(3)/(12*Pi^2), an auxiliary constant in the computation of the radial density of a 4-step uniform random walk. 2
 0, 1, 4, 6, 2, 4, 4, 5, 3, 1, 6, 2, 6, 2, 8, 8, 0, 4, 7, 6, 0, 2, 8, 3, 6, 2, 1, 5, 5, 8, 5, 8, 1, 5, 0, 9, 5, 7, 4, 0, 2, 5, 5, 6, 0, 1, 8, 0, 2, 1, 4, 0, 7, 0, 7, 1, 9, 9, 8, 1, 0, 9, 7, 7, 5, 2, 6, 8, 9, 3, 0, 0, 9, 8, 2, 3, 4, 2, 2, 6, 0, 1, 4, 2, 4, 1, 5, 7, 1, 5, 5, 6, 0, 2, 0, 7, 2, 1, 9, 0, 8, 2, 6, 5, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10001 Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of Short Uniform Random Walks, p. 969, Canad. J. Math. 64(2012), 961-990. FORMULA phi_3(x) = (sqrt(3) * 2F1(1/3, 2/3; 1; (x^2*(9-x^2)^2)/(3+x^2)^3))/(Pi^2*(3+x^2)), where 2F1 is the hypergeometric function. EXAMPLE 0.0146244531626288047602836215585815095740255601802140707199810977526893... MAPLE Digits:=100: evalf(sqrt(3)/(12*Pi^2)); # Wesley Ivan Hurt, Jul 10 2014 MATHEMATICA Join[{0}, RealDigits[Sqrt[3]/(12*Pi^2), 10, 104] // First] CROSSREFS Sequence in context: A059854 A155991 A184083 * A160502 A010669 A225092 Adjacent sequences:  A244990 A244991 A244992 * A244994 A244995 A244996 KEYWORD nonn,cons,walk AUTHOR Jean-François Alcover, Jul 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 14:28 EDT 2019. Contains 328114 sequences. (Running on oeis4.)