%I #10 Jul 23 2014 10:21:39
%S 0,1,0,1,1,0,0,1,0,1,1,0,0,0,1,1,1,0,0,1,0,1,1,0,1,0,0,0,0,1,1,1,1,1,
%T 0,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0,1,1,0,1,0,1,0,1,1,1,
%U 1,0,0,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,1,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,1,1,1,1,0,1,1,1,0,1,1
%N Characteristic function for A244991: a(n) = A000035(A061395(n)).
%C If a(n) = 1, then the largest prime p_k [where p_k = A000040(k) = A006530(n) and k = A061395(n)] dividing n has an odd index (i.e. k = 2h+1), otherwise, when a(n) = 0, it means that either n = 1 or the largest prime p_k|n has an even index (k = 2h).
%H Antti Karttunen, <a href="/A244992/b244992.txt">Table of n, a(n) for n = 1..10001</a>
%F a(n) = A000035(A061395(n)).
%F For all n >= 1, a(n) = A066829(A122111(n)) and vice versa, A066829(n) = a(A122111(n)).
%F For all n >= 1, a(n) = 1 - A000035(A244321(n)) and a(A244322(n)) = 1 - A000035(n).
%o (Scheme) (define (A244992 n) (A000035 (A061395 n)))
%Y Cf. A244991, A000035, A006530, A061395, A066829, A122111, A244321, A244322.
%K nonn
%O 1
%A _Antti Karttunen_, Jul 21 2014