login
A244924
Odd integers n such that for every integer k>0, n*2^k-1 has a divisor in the set { 3, 5, 7, 13, 17, 97, 673 }.
1
73520771, 108288041, 127499219, 141239113, 160792529, 198545797, 205293103, 217763051, 227258803, 262056089, 269931509, 303224819, 307060289, 353982553, 368427809, 430034677, 525141899, 581603107, 585721991, 600824113, 612314921, 644606467, 718519237, 723522461
OFFSET
1,1
COMMENTS
For n > 96 a(n) = a(n-96) + 3029691210, the first 96 values are given in the table.
LINKS
FORMULA
For n > 96 a(n)=a(n-96) + 3029691210
PROG
(PFGW & SCRIPT)
SCRIPT
DIM k
DIM n, 73520701
OPENFILEOUT myf, a(n).txt
LABEL loop1
SET n, n+2
IF n>3103211981 THEN END
SET k, 0
LABEL loop2
SET k, k+1
IF k>300 THEN GOTO a
IF (n*2^k-1)%3==0 THEN GOTO loop2
IF (n*2^k-1)%5==0 THEN GOTO loop2
IF (n*2^k-1)%7==0 THEN GOTO loop2
IF (n*2^k-1)%13==0 THEN GOTO loop2
IF (n*2^k-1)%17==0 THEN GOTO loop2
IF (n*2^k-1)%97==0 THEN GOTO loop2
IF (n*2^k-1)%673==0 THEN GOTO loop2
GOTO loop1
LABEL a
WRITE myf, n
GOTO loop1
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jul 08 2014
STATUS
approved