

A244890


"Stringed numbers": see Comments for definition.


1



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 300, 301, 400, 401, 500, 501, 600, 601, 700, 701, 800, 801, 900, 901, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Supoose n is the kdigit number d_1 d_2 ... d_k. Form a graph with k nodes labeled 1, 2, ..., k. Join node i to node j by a directed edge whenever ji = 1 + d_i. Then n is a stringed number iff the graph has a Hamiltonian path.
Singledigit numbers are trivially stringed.


REFERENCES

Eric Angelini, Posting to Sequence Fans Mailing List, Jul 10 2014; with additional comments from Robert Israel.


LINKS

Lars Blomberg, Table of n, a(n) for n = 1..10001


EXAMPLE

If n = 2014 the graph has nodes 1,2,3,4 with edges 1>4 (since 41=d_1+1=3), 2>1 (since 21=d_2+1=1), 2>3 (since 32=d_2+1=1), 3>1 (since 31=d_3+1=2) , and there is a Hamiltonian path 2>3>1>4, so 2014 is stringed.


MAPLE

Stringed:= proc(n)
uses GraphTheory;
local L, G, E, d;
L:= convert(n, base, 10);
d:= nops(L);
E:= select(e > e[2] <= d and e[2] >= 1, {seq(seq([i, i+s*(1+L[i])], s=[1, 1]), i=1..d)})
union {seq([0, i], i=1..d)} union {seq([i, 0], i=1..d)};;
G:= Digraph([$0..d], E);
IsHamiltonian(G);
end proc;
select(Stringed, {$0..2020});
# Robert Israel, Jul 10 2014


CROSSREFS

Sequence in context: A175396 A107085 A212499 * A032945 A236402 A052018
Adjacent sequences: A244887 A244888 A244889 * A244891 A244892 A244893


KEYWORD

nonn,base


AUTHOR

N. J. A. Sloane, Jul 13 2014


EXTENSIONS

Corrected and extended by Robert Israel, Jul 10 2014


STATUS

approved



