

A244858


Decimal expansion of the integral of log(x^2+y^2)/((1+x^2)*(1+y^2)) dx dy over the square [0,1]x[0,1] (negated).


0



6, 2, 4, 2, 3, 1, 7, 6, 1, 2, 7, 3, 5, 7, 5, 2, 1, 5, 6, 7, 1, 8, 0, 3, 4, 4, 4, 2, 0, 0, 3, 8, 7, 7, 3, 7, 4, 6, 3, 1, 2, 6, 8, 1, 5, 2, 8, 6, 1, 9, 1, 9, 2, 6, 8, 6, 0, 4, 7, 9, 3, 7, 0, 3, 9, 1, 7, 8, 8, 6, 0, 2, 6, 3, 0, 3, 5, 0, 9, 0, 8, 4, 9, 4, 0, 2, 7, 0, 0, 7, 7, 9, 0, 3, 4, 3, 7, 6, 4, 5, 1, 9, 3, 3, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This integral is mentioned by Bailey & Borwein as the only nonchallenging one in the family J(t) = integral of log(t+x^2+y^2)/((1+x^2)*(1+y^2)) dx dy over the square [0,1]x[0,1], with t>=0.


LINKS

Table of n, a(n) for n=0..104.
D. H. Bailey and J. M. Borwein, Experimental computation as an ontological game changer, 2014. see p. 5.
D. H. Bailey, J. M. Borwein and A. D. Kaiser, Automated Simplification of Large Symbolic Expressions, see p. 13.


FORMULA

Pi^2/16*log(2)  7/8*zeta(3).


EXAMPLE

0.6242317612735752156718034442003877374631268152861919268604793703917886...


MATHEMATICA

Pi^2/16*Log[2]  7/8*Zeta[3] // RealDigits[#, 10, 105]& // First


CROSSREFS

Cf. A244843.
Sequence in context: A248273 A176396 A198502 * A064925 A173273 A084945
Adjacent sequences: A244855 A244856 A244857 * A244859 A244860 A244861


KEYWORD

cons,nonn


AUTHOR

JeanFrançois Alcover, Jul 07 2014


STATUS

approved



