This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244858 Decimal expansion of the integral of log(x^2+y^2)/((1+x^2)*(1+y^2)) dx dy over the square [0,1]x[0,1] (negated). 0
 6, 2, 4, 2, 3, 1, 7, 6, 1, 2, 7, 3, 5, 7, 5, 2, 1, 5, 6, 7, 1, 8, 0, 3, 4, 4, 4, 2, 0, 0, 3, 8, 7, 7, 3, 7, 4, 6, 3, 1, 2, 6, 8, 1, 5, 2, 8, 6, 1, 9, 1, 9, 2, 6, 8, 6, 0, 4, 7, 9, 3, 7, 0, 3, 9, 1, 7, 8, 8, 6, 0, 2, 6, 3, 0, 3, 5, 0, 9, 0, 8, 4, 9, 4, 0, 2, 7, 0, 0, 7, 7, 9, 0, 3, 4, 3, 7, 6, 4, 5, 1, 9, 3, 3, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This integral is mentioned by Bailey & Borwein as the only non-challenging one in the family J(t) = integral of log(t+x^2+y^2)/((1+x^2)*(1+y^2)) dx dy over the square [0,1]x[0,1], with t>=0. LINKS D. H. Bailey and J. M. Borwein, Experimental computation as an ontological game changer, 2014. see p. 5. D. H. Bailey, J. M. Borwein and A. D. Kaiser, Automated Simplification of Large Symbolic Expressions, see p. 13. FORMULA Pi^2/16*log(2) - 7/8*zeta(3). EXAMPLE -0.6242317612735752156718034442003877374631268152861919268604793703917886... MATHEMATICA Pi^2/16*Log[2] - 7/8*Zeta[3] // RealDigits[#, 10, 105]& // First CROSSREFS Cf. A244843. Sequence in context: A248273 A176396 A198502 * A064925 A173273 A084945 Adjacent sequences:  A244855 A244856 A244857 * A244859 A244860 A244861 KEYWORD cons,nonn AUTHOR Jean-François Alcover, Jul 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 11:59 EDT 2019. Contains 328110 sequences. (Running on oeis4.)