login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244844 Decimal expansion of 2F1(1, 1/4; 5/4; -1/4), where 2F1 is a Gaussian hypergeometric function. 1
9, 5, 5, 9, 3, 3, 8, 3, 7, 0, 0, 5, 5, 7, 0, 3, 4, 5, 1, 5, 8, 7, 2, 2, 5, 6, 3, 3, 9, 5, 8, 1, 5, 4, 2, 9, 9, 1, 6, 4, 2, 4, 1, 6, 1, 2, 6, 7, 8, 4, 5, 7, 5, 3, 8, 1, 6, 4, 3, 1, 5, 7, 6, 5, 8, 5, 3, 9, 9, 9, 1, 6, 4, 1, 5, 5, 9, 5, 8, 3, 8, 1, 6, 4, 2, 4, 2, 0, 3, 3, 8, 6, 6, 3, 8, 0, 2, 2, 3, 4, 1, 7, 2, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This constant is mentioned by Bailey & Borwein as an example of the use of the PSLQ integer relation algorithm to discover new formulas.

LINKS

Table of n, a(n) for n=0..103.

D. H. Bailey and J. M. Borwein, Experimental computation as an ontological game changer, 2014. p. 14. [broken link]

Eric Weisstein's MathWorld, Hypergeometric Function.

Eric Weisstein's MathWorld, PSLQ Algorithm.

FORMULA

4*2F1(1, 1/4; 5/4; -1/4) + 2*arctan(1/2) - log(5) = Pi.

EXAMPLE

0.9559338370055703451587225633958154299164241612678457538164315765853999...

MATHEMATICA

Hypergeometric2F1[1, 1/4, 5/4, -1/4] // RealDigits[#, 10, 104]& // First

CROSSREFS

Sequence in context: A154683 A200026 A262276 * A255896 A019882 A292824

Adjacent sequences:  A244841 A244842 A244843 * A244845 A244846 A244847

KEYWORD

cons,nonn

AUTHOR

Jean-Fran├žois Alcover, Jul 07 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 00:45 EDT 2019. Contains 321479 sequences. (Running on oeis4.)