login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244839 Decimal expansion of the Euler double sum sum_(m>0)(sum_(n>0)((-1)^(m+n-1)/((2m-1)(m+n-1)^3))). 2

%I

%S 8,7,2,9,2,9,2,8,9,5,2,0,3,5,4,5,1,8,9,5,7,9,4,1,9,9,1,0,2,8,7,3,2,5,

%T 3,7,3,8,2,9,9,4,5,2,0,5,3,4,3,2,4,4,5,6,8,9,3,7,1,6,2,1,1,2,1,7,0,4,

%U 7,7,3,1,6,7,0,9,0,9,0,5,4,7,6,9,6,9,2,0,2,3,2,2,4,3,1,5,5,5,1,7,5,2,1,2,0

%N Decimal expansion of the Euler double sum sum_(m>0)(sum_(n>0)((-1)^(m+n-1)/((2m-1)(m+n-1)^3))).

%C The computation of this constant is given by Bailey & Borwein as an example of the use of CAS packages to check digital integrity of published mathematics.

%H Vincenzo Librandi, <a href="/A244839/b244839.txt">Table of n, a(n) for n = 0..1000</a>

%H D. H. Bailey and J. M. Borwein, <a href="http://moodle.thecarma.net/jon/ontology.pdf">Experimental computation as an ontological game changer</a>, 2014, see p. 4.

%H J. M. Borwein, I.J. Zucker and J. Boersma, <a href="http://carma.newcastle.edu.au/MZVs/mzv-week05.pdf">The evaluation of character Euler double sums</a>, The Ramanujan Journal, April 2008, Volume 15, Issue 3, pp 377-405, see p. 17.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/Polylogarithm.html">Polylogarithm</a>.

%F 4*polylog(4, 1/2) - 151/2880*Pi^4 - Pi^2/6*log(2)^2 + 1/6*log(2)^4 + 7/2*log(2)*zeta(3).

%e 0.87292928952035451895794199102873253738299452053432445689371621121704773167...

%t 4*PolyLog[4, 1/2] - 151/2880*Pi^4 - Pi^2/6*Log[2]^2 + 1/6*Log[2]^4 + 7/2*Log[2]*Zeta[3] // RealDigits[#, 10, 105]& // First

%o (PARI) 151*Pi^4/2880 + Pi^2*log(2)^2/6 - 4*polylog(4, 1/2) - log(2)^4/6 - 7*log(2)*zeta(3)/2 \\ _Charles R Greathouse IV_, Aug 27 2014

%Y Cf. A099218.

%K cons,nonn

%O 0,1

%A _Jean-Fran├žois Alcover_, Jul 07 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 18:12 EST 2019. Contains 329847 sequences. (Running on oeis4.)