OFFSET
1,1
COMMENTS
This sequence differs from A003664.
REFERENCES
R. K. Guy, "s-Additive sequences," preprint, 1994.
LINKS
S. R. Finch, Are 0-additive sequences always regular?, Amer. Math. Monthly, 99 (1992), 671-673.
Index entries for linear recurrences with constant coefficients, signature (-1,3,3).
FORMULA
a(2n) = 4a(2n - 2) - 3a(2n - 4) and a(2n +1) = a(2n) +1, for n>2.
a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) for n>6. - Colin Barker, Jul 11 2014
G.f.: x*(7*x^5+14*x^4+6*x^3-5*x^2-7*x-2) / ((x+1)*(3*x^2-1)). - Colin Barker, Jul 11 2014
EXAMPLE
The numbers 11-27 are not in the sequence since some combination of the previous terms add to it. example 17=2+5+10.
The number 28 however is a term since no combination of the previous terms cannot be found which sum to 28.
MATHEMATICA
f[s_List] := f[n] = Block[{k = s[[-1]] + 1, ss = Union[ Plus @@@ Subsets[s]]}, While[ MemberQ[ss, k], k++]; Append[s, k]]; Nest[ f[#] &, {2, 5}, 20] (* or *)
b = LinearRecurrence[{4, -3}, {9, 28}, 18]; Join[{2, 5, 6}, Riffle[b, b + 1]]
Join[{2, 5, 6}, LinearRecurrence[{-1, 3, 3}, {9, 10, 28}, 36]] (* Ray Chandler, Aug 03 2015 *)
PROG
(PARI) Vec(x*(7*x^5+14*x^4+6*x^3-5*x^2-7*x-2)/((x+1)*(3*x^2-1)) + O(x^100)) \\ Colin Barker, Jul 11 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane and Robert G. Wilson v, Jul 05 2014
STATUS
approved