login
A244717
Number of compositions of n with exactly 5 transitions between different parts.
2
2, 16, 78, 274, 814, 2058, 4752, 9930, 19574, 36186, 63924, 108078, 176672, 279260, 429800, 645222, 947142, 1363678, 1927532, 2681804, 3673786, 4967774, 6630024, 8752102, 11422254, 14770528, 18913112, 24022400, 30253734, 37831400, 46953628, 57914360, 70960394
OFFSET
9,1
LINKS
MAPLE
b:= proc(n, v) option remember; `if`(n=0, [1, 0$5],
add(`if`(v in [0, i], b(n-i, `if`(i<=n-i, i, -1)),
[0, b(n-i, `if`(i<=n-i, i, -1))[1..5][]]), i=1..n))
end:
a:= n-> b(n, 0)[6]:
seq(a(n), n=9..60);
MATHEMATICA
b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n - i, i]*
If[v == 0 || v == i, 1, x], {i, n}]]];
a[n_] := Coefficient[b[n, 0], x, 5];
Table[a[n], {n, 9, 60}] (* Jean-François Alcover, Aug 29 2021, after A238279 Maple code *)
CROSSREFS
Column k=5 of A238279.
Sequence in context: A034581 A356372 A028336 * A208102 A207723 A208835
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jul 04 2014
STATUS
approved