login
A244716
Number of compositions of n with exactly 4 transitions between different parts.
2
1, 6, 31, 99, 278, 654, 1390, 2714, 4927, 8531, 13963, 22134, 33767, 50283, 72470, 102891, 142375, 194202, 260093, 343973, 447906, 577636, 735540, 928009, 1159312, 1436145, 1765079, 2152787, 2608321, 3137866, 3755214, 4464420, 5284570, 6216275, 7287298, 8494233
OFFSET
7,2
LINKS
MAPLE
b:= proc(n, v) option remember; `if`(n=0, [1, 0$4],
add(`if`(v in [0, i], b(n-i, `if`(i<=n-i, i, -1)),
[0, b(n-i, `if`(i<=n-i, i, -1))[1..4][]]), i=1..n))
end:
a:= n-> b(n, 0)[5]:
seq(a(n), n=7..60);
MATHEMATICA
b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n - i, i]*
If[v == 0 || v == i, 1, x], {i, n}]]];
a[n_] := Coefficient[b[n, 0], x, 4];
Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Aug 29 2021, after A238279 Maple code *)
CROSSREFS
Column k=4 of A238279.
Sequence in context: A273790 A096959 A112562 * A024447 A303172 A354552
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jul 04 2014
STATUS
approved