login
A244714
Number of compositions of n with exactly 2 transitions between different parts.
2
1, 4, 14, 29, 56, 100, 148, 230, 322, 446, 573, 778, 953, 1215, 1456, 1806, 2134, 2542, 2944, 3477, 3968, 4600, 5186, 5872, 6657, 7446, 8304, 9217, 10258, 11172, 12465, 13564, 14867, 16072, 17716, 18816, 20832, 22055, 24144, 25504, 27904, 29168, 32051, 33375
OFFSET
4,2
LINKS
EXAMPLE
a(4) = 1: [1,2,1].
a(5) = 4: [1,1,2,1], [1,2,1,1], [1,3,1], [2,1,2].
MAPLE
b:= proc(n, v) option remember; `if`(n=0, [1, 0$2],
add(`if`(v in [0, i], b(n-i, `if`(i<=n-i, i, -1)),
[0, b(n-i, `if`(i<=n-i, i, -1))[1..2][]]), i=1..n))
end:
a:= n-> b(n, 0)[3]:
seq(a(n), n=4..60);
MATHEMATICA
b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n - i, i]*
If[v == 0 || v == i, 1, x], {i, n}]]];
a[n_] := Coefficient[b[n, 0], x, 2];
Table[a[n], {n, 4, 60}] (* Jean-François Alcover, Aug 29 2021, after A238279 Maple code *)
CROSSREFS
Column k=2 of A238279.
Sequence in context: A316213 A296985 A338311 * A218212 A305637 A103779
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jul 04 2014
STATUS
approved