OFFSET
0,1
COMMENTS
a(n) = n if n is congruent to (6, 7) mod 8.
FORMULA
a(n) = (n+6) - (n AND 6).
a(n) = (n XOR 6) + (n AND 6).
a(n) = n + ( 6*floor((n+2)/2) mod 8 ).
Sum_{n>=0} (-1)^n/a(n) = sqrt(2)*Pi/4 - sqrt(2)*log(sqrt(2)+1)/2 - log(2)/2. - Amiram Eldar, Aug 07 2023
MAPLE
with(Bits): seq(Or(n, 6), n = 0..60);
MATHEMATICA
Table[BitOr[n, 6], {n, 0, 80}] (* Bruno Berselli, Jul 01 2014 *)
PROG
(Magma) [BitwiseOr(n, 6): n in [0..80]]; // Bruno Berselli, Jul 01 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary Detlefs, Jun 30 2014
STATUS
approved