login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244572 a(n) = max(A244570(n), A244571(n)). 6
3, 7, 11, 23, 17, 37, 23, 41, 43, 61, 47, 61, 53, 73, 109, 107, 89, 73, 109, 227, 113, 113, 139, 157, 127, 149, 127, 131, 283, 137, 139, 181, 173, 179, 167, 191, 181, 227, 193, 251, 239, 199, 233, 257, 239, 251, 239, 241, 271, 313, 241, 271, 281, 277, 443, 389 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

a(n) < (prime(n))^3 yields an infinity of twin primes (it is sufficient, if this inequality holds for an arbitrary infinite subsequence n = n_k). For a proof, see the Shevelev link (Remark 8).

The author apparently claims to have proved the infinitude of twin primes. No alleged proof has been accepted by the mathematical community. - Jens Kruse Andersen, Jul 13 2014

In the statistical part of my link (Section 14), using the Chinese Remainder and Tolev's theorems, I reduced the supposition of the finiteness of twin primes to an arbitrarily long coin-flipping experiment in which only "heads" appear. There I gave only a "demonstration" of the infinity of twin primes. In the analytical part (Sections 15-18) I proved unconditionally till now only Theorem 13. - Vladimir Shevelev, Jul 22 2014

LINKS

Jens Kruse Andersen, Table of n, a(n) for n = 2..10000

V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2010-2014. (Sections 10,14-18). [Note this article has been changed many times.]

MATHEMATICA

a[n_, k_] := For[p = Prime[n], True, p = NextPrime[p], If[PrimeQ[p Prime[n] + k], Return[p]]];

a[n_] := Max[a[n, -2], a[n, 2]];

Table[a[n], {n, 2, 60}] (* Jean-Fran├žois Alcover, Nov 18 2018 *)

CROSSREFS

Cf. A244570, A244571, A242519, A242520.

Sequence in context: A082675 A201645 A028831 * A137516 A247380 A187265

Adjacent sequences:  A244569 A244570 A244571 * A244573 A244574 A244575

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Jun 30 2014

EXTENSIONS

More terms from Peter J. C. Moses, Jun 30 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 05:55 EDT 2020. Contains 336197 sequences. (Running on oeis4.)