login
A244566
Odd integers n such that for every integer k>0, n*2^k+1 has a divisor in the set { 3, 5, 7, 13, 17, 97, 257 }.
1
327739, 5455789, 8879993, 9043831, 21823667, 25763447, 29949559, 75037639, 92732027, 119863547, 119879899, 122091961, 146880319, 151060223, 152106751, 163378771, 181339441, 182384417, 182646049, 218039041, 232190537
OFFSET
1,1
COMMENTS
These are the Sierpiński numbers (A076336) with covering set {3, 5, 7, 13, 17, 97, 257}. - David W. Wilson, Jul 18 2014
For n > 96, a(n) = a(n-96) + 1156954890, the first 96 values are in the table.
LINKS
FORMULA
For n > 96, a(n) = a(n-96) + 1156954890.
PROG
(PARI) is(n)=my(G=578477445, t=Mod(n, G)); for(k=1, 768, t*=2; if(gcd(t+1, G)==1, return(0))); n%2 \\ Charles R Greathouse IV, Jul 18 2014
KEYWORD
nonn,easy
AUTHOR
Pierre CAMI, Jun 30 2014
STATUS
approved