login
Integers n such that for every integer k>0, n*6^k+1 has a divisor in the set { 7, 13, 31, 37, 97 }.
0

%I #9 Jul 12 2014 16:30:17

%S 174308,188299,702703,1045848,1129794,1615907,1956746,2485141,3162650,

%T 4216218,4786277,4800566,5048170,6275088,6778764,7075837,7276821,

%U 7549807,8468524,8554258,8851331,9616447,9695442,10039882

%N Integers n such that for every integer k>0, n*6^k+1 has a divisor in the set { 7, 13, 31, 37, 97 }.

%C For n > 24 a(n) = a(n-24) + 10124569, the first 24 values are in the data.

%C When the number a(n) has 4 or 9 as the last digit the number a(n)*6^k-1 is always divisible by 5 and have always a divisor in the set { 7, 13, 31, 37, 97 } for every k.

%F For n > 24 a(n) = a(n-24) + 10124569.

%Y Cf. A076337, A243969, A244070, A244071, A244072, A244073, A244074, A244076, A244211, A244545.

%K nonn

%O 1,1

%A _Pierre CAMI_, Jun 29 2014